論文の概要: m-KAILIN: Knowledge-Driven Agentic Scientific Corpus Distillation Framework for Biomedical Large Language Models Training
- arxiv url: http://arxiv.org/abs/2504.19565v2
- Date: Fri, 06 Jun 2025 06:07:21 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-09 17:28:42.958928
- Title: m-KAILIN: Knowledge-Driven Agentic Scientific Corpus Distillation Framework for Biomedical Large Language Models Training
- Title(参考訳): m-KAILIN:バイオメディカル大規模言語モデルトレーニングのための知識駆動型エージェント科学コーパス蒸留フレームワーク
- Authors: Meng Xiao, Xunxin Cai, Qingqing Long, Chengrui Wang, Yuanchun Zhou, Hengshu Zhu,
- Abstract要約: バイオメディカルな大規模言語モデル(LLM)のためのコーパスヘッダーは、オープンソースの科学コーパスにおいて、不十分な量と品質のプレス課題に対処しようとしている。
本稿では, バイオメディカル領域におけるLLMトレーニングに適した, 科学的コーパス蒸留のための知識駆動型エージェントフレームワークを提案する。
- 参考スコア(独自算出の注目度): 22.996230737442254
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Corpus distillation for biomedical large language models (LLMs) seeks to address the pressing challenge of insufficient quantity and quality in open-source annotated scientific corpora, which remains a bottleneck for effective LLM training in biomedical research. This paper proposes a knowledge-driven, agentic framework for scientific corpus distillation, tailored explicitly for LLM training in the biomedical domain, addressing the challenge posed by the complex hierarchy of biomedical knowledge. Central to our approach is a collaborative multi-agent architecture, where specialized agents, each guided by the Medical Subject Headings (MeSH) hierarchy, work in concert to autonomously extract, synthesize, and self-evaluate high-quality textual data from vast scientific literature. This agentic framework collectively generates and refines domain-specific question-answer pairs, ensuring comprehensive coverage and consistency with biomedical ontologies while minimizing manual involvement. Extensive experimental results show that language models trained on our multi-agent distilled datasets achieve notable improvements in biomedical question-answering tasks, outperforming both strong life sciences LLM baselines and advanced proprietary models. Notably, our AI-Ready dataset enables Llama3-70B to surpass GPT-4 with MedPrompt and Med-PaLM-2, despite their larger scale. Detailed ablation studies and case analyses further validate the effectiveness and synergy of each agent within the framework, highlighting the potential of multi-agent collaboration in biomedical LLM training.
- Abstract(参考訳): バイオメディカル大規模言語モデル(LLMs)のコーパス蒸留は、バイオメディカル研究において有効なLLMトレーニングのボトルネックであるオープンソースのアノテートされた科学コーパスにおいて、不十分な量と品質のプレス課題に対処しようとするものである。
本稿では, バイオメディカルドメインにおけるLCMトレーニングに適した, 科学的コーパス蒸留のための知識駆動型エージェントフレームワークを提案する。
我々のアプローチの中心は協調的なマルチエージェントアーキテクチャであり、それぞれがメディカル・サブジェクト・ヘッダー(MeSH)階層によってガイドされ、巨大な科学文献から高品質なテキストデータを自律的に抽出し、合成し、自己評価する。
このエージェントフレームワークは、ドメイン固有の質問応答ペアをまとめて生成し、手動による関与を最小限にしつつ、バイオメディカルオントロジーとの包括的カバレッジと一貫性を確保する。
総合的な実験結果から,多エージェント蒸留データセットを用いて学習した言語モデルは,生物医学的質問応答タスクにおいて顕著な改善を達成し,強い生命科学のLCMベースラインと先進的なプロプライエタリモデルの両方を上回ります。
特に、我々のAI-Readyデータセットは、大規模であるにも関わらず、Llama3-70BがMedPromptとMed-PaLM-2でGPT-4を超えることを可能にする。
詳細なアブレーション研究とケースアナリシスは、このフレームワーク内の各エージェントの有効性と相乗効果をさらに検証し、バイオメディカルLLMトレーニングにおけるマルチエージェント協調の可能性を強調した。
関連論文リスト
- TAMA: A Human-AI Collaborative Thematic Analysis Framework Using Multi-Agent LLMs for Clinical Interviews [54.35097932763878]
Thematic Analysis (TA) は、構造化されていないテキストデータの潜在意味を明らかにするために広く使われている定性的手法である。
本稿では,多エージェントLEMを用いた人間とAIの協調的テーマ分析フレームワークTAMAを提案する。
TAMA は既存の LLM 支援TA アプローチよりも優れており,高い主題的ヒット率,カバレッジ,独特性を実現している。
論文 参考訳(メタデータ) (2025-03-26T15:58:16Z) - Knowledge Hierarchy Guided Biological-Medical Dataset Distillation for Domain LLM Training [10.701353329227722]
学術文献から高品質なテキストトレーニングデータの蒸留を自動化する枠組みを提案する。
われわれのアプローチは、バイオメディカル領域とより密接に一致した質問を自己評価し、生成する。
本手法は,生命科学領域の事前学習モデルと比較して,質問応答タスクを大幅に改善する。
論文 参考訳(メタデータ) (2025-01-25T07:20:44Z) - BIOMEDICA: An Open Biomedical Image-Caption Archive, Dataset, and Vision-Language Models Derived from Scientific Literature [73.39593644054865]
BIOMEDICAはスケーラブルでオープンソースのフレームワークで、PubMed Central Open Accessサブセット全体を抽出、注釈付け、シリアライズして、使いやすく、公開可能なデータセットにする。
われわれのフレームワークは600万以上の記事から2400万以上のユニークな画像テキストペアで包括的なアーカイブを生成する。
BMCA-CLIPは、ストリーミングを通じてBIOMEDICAデータセット上で継続的に事前トレーニングされたCLIPスタイルのモデルのスイートで、27TBのデータをローカルにダウンロードする必要がなくなる。
論文 参考訳(メタデータ) (2025-01-13T09:58:03Z) - Biology Instructions: A Dataset and Benchmark for Multi-Omics Sequence Understanding Capability of Large Language Models [51.316001071698224]
本稿では,生物配列関連命令チューニングデータセットであるBiology-Instructionsを紹介する。
このデータセットは、大きな言語モデル(LLM)と複雑な生物学的シーケンスに関連するタスクのギャップを埋めることができます。
また、新たな3段階トレーニングパイプラインを備えたChatMultiOmicsという強力なベースラインも開発しています。
論文 参考訳(メタデータ) (2024-12-26T12:12:23Z) - Y-Mol: A Multiscale Biomedical Knowledge-Guided Large Language Model for Drug Development [24.5979645373074]
Y-Mol は知識誘導型 LLM であり、鉛化合物発見、プリクリニック、クリニック予測といったタスクをこなすように設計されている。
出版物、知識グラフ、専門家が設計した合成データから学習する。
Y-Molは、鉛化合物の発見、分子特性の予測、薬物相互作用のイベントの同定において、汎用LLMよりも著しく優れている。
論文 参考訳(メタデータ) (2024-10-15T12:39:20Z) - A Survey for Large Language Models in Biomedicine [31.719451674137844]
このレビューは、PubMed、Web of Science、arXivなどのデータベースから得られた484の出版物の分析に基づいている。
我々は、診断支援、薬物発見、パーソナライズドメディカル医療を含む幅広いバイオメディカル・タスクにおいて、ゼロショット学習におけるLLMの能力について検討する。
データプライバシの懸念、限定されたモデル解釈可能性、データセットの品質の問題、倫理など、LLMがバイオメディシック領域で直面する課題について論じる。
論文 参考訳(メタデータ) (2024-08-29T12:39:16Z) - LLMs-in-the-loop Part-1: Expert Small AI Models for Bio-Medical Text Translation [0.0]
本研究では,医療用テキストに最適化された教師ありニューラルマシン翻訳モデルを開発するために,新しい"LLMs-in-the-loop"アプローチを提案する。
6つの言語での独自の平行コーパスは、科学論文、人工的に生成された臨床文書、医療文書から編纂された。
MarianMTベースのモデルは、Google Translate、DeepL、GPT-4-Turboより優れている。
論文 参考訳(メタデータ) (2024-07-16T19:32:23Z) - An Evaluation of Large Language Models in Bioinformatics Research [52.100233156012756]
本研究では,大規模言語モデル(LLM)の性能について,バイオインフォマティクスの幅広い課題について検討する。
これらのタスクには、潜在的なコーディング領域の同定、遺伝子とタンパク質の命名されたエンティティの抽出、抗微生物および抗がんペプチドの検出、分子最適化、教育生物情報学問題の解決が含まれる。
以上の結果から, GPT 変種のような LLM がこれらのタスクの多くをうまく処理できることが示唆された。
論文 参考訳(メタデータ) (2024-02-21T11:27:31Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
我々は,emphDoctorをプレイヤとして,NPC間の動的医療相互作用をシミュレーションするフレームワークであるtextbfAI Hospitalを紹介した。
この設定は臨床シナリオにおけるLCMの現実的な評価を可能にする。
高品質な中国の医療記録とNPCを利用したマルチビュー医療評価ベンチマークを開発した。
論文 参考訳(メタデータ) (2024-02-15T06:46:48Z) - Diversifying Knowledge Enhancement of Biomedical Language Models using
Adapter Modules and Knowledge Graphs [54.223394825528665]
我々は、軽量なアダプターモジュールを用いて、構造化された生体医学的知識を事前訓練された言語モデルに注入するアプローチを開発した。
バイオメディカル知識システムUMLSと新しいバイオケミカルOntoChemの2つの大きなKGと、PubMedBERTとBioLinkBERTの2つの著名なバイオメディカルPLMを使用している。
計算能力の要件を低く保ちながら,本手法がいくつかの事例において性能改善につながることを示す。
論文 参考訳(メタデータ) (2023-12-21T14:26:57Z) - Large Language Models, scientific knowledge and factuality: A framework to streamline human expert evaluation [0.0]
本研究は,生物医学的背景知識と対話するための大規模言語モデルの可能性を探るものである。
フレームワークには3つの評価ステップが含まれており、それぞれが流布、即応的なアライメント、セマンティック・コヒーレンス、事実的知識、生成した応答の特異性という3つの側面を逐次評価する。
この研究は、ChatGPT、GPT-4、Llama 2を含む11の最先端のLLMを2つのプロンプトベースタスクで持つ能力に関する体系的な評価を提供する。
論文 参考訳(メタデータ) (2023-05-28T22:46:21Z) - BiomedGPT: A Generalist Vision-Language Foundation Model for Diverse Biomedical Tasks [68.39821375903591]
汎用AIは、さまざまなデータ型を解釈する汎用性のために、制限に対処する可能性を秘めている。
本稿では,最初のオープンソースかつ軽量な視覚言語基盤モデルであるBiomedGPTを提案する。
論文 参考訳(メタデータ) (2023-05-26T17:14:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。