論文の概要: Arabic Metaphor Sentiment Classification Using Semantic Information
- arxiv url: http://arxiv.org/abs/2504.19590v1
- Date: Mon, 28 Apr 2025 08:53:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:54.366533
- Title: Arabic Metaphor Sentiment Classification Using Semantic Information
- Title(参考訳): 意味情報を用いたアラビア語のメタファー知覚分類
- Authors: Israa Alsiyat,
- Abstract要約: このツールには感情分類のための意味的感情タグが含まれている。
この手法は、アラビア語のオンラインメタファーが感情に与える影響を、新しく設計されたツールを通して示すものである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this paper, I discuss the testing of the Arabic Metaphor Corpus (AMC) [1] using newly designed automatic tools for sentiment classification for AMC based on semantic tags. The tool incorporates semantic emotional tags for sentiment classification. I evaluate the tool using standard methods, which are F-score, recall, and precision. The method is to show the impact of Arabic online metaphors on sentiment through the newly designed tools. To the best of our knowledge, this is the first approach to conduct sentiment classification for Arabic metaphors using semantic tags to find the impact of the metaphor.
- Abstract(参考訳): 本稿では、意味タグに基づくAMCの感情分類のための新しいツールを用いて、アラビア・メタファー・コーパス(AMC)[1]のテストについて論じる。
このツールには感情分類のための意味的感情タグが含まれている。
Fスコア,リコール,精度の標準手法を用いてツールの評価を行った。
この手法は、アラビア語のオンラインメタファーが感情に与える影響を、新しく設計されたツールを通して示すものである。
我々の知る限りでは、これはアラビア語のメタファーに対する感情分類を行うための最初のアプローチであり、セマンティックタグを使ってメタファーの影響を見つける。
関連論文リスト
- You Shall Know a Tool by the Traces it Leaves: The Predictability of Sentiment Analysis Tools [74.98850427240464]
感情分析ツールが同じデータセットで一致しないことを示す。
感傷的アノテーションに使用される感情ツールは,その結果から予測できることを示す。
論文 参考訳(メタデータ) (2024-10-18T17:27:38Z) - ContrastWSD: Enhancing Metaphor Detection with Word Sense Disambiguation Following the Metaphor Identification Procedure [1.03590082373586]
メタファー識別法(MIP)と単語センス曖昧化(WSD)を統合したRoBERTaを用いたメタファメタメタファ検出モデルを提案する。
WSDモデルから派生した単語感覚を利用することで、メタファ検出プロセスを強化し、他の手法より優れる。
我々は,様々なベンチマークデータセットに対するアプローチを評価し,それを強力なベースラインと比較し,メタファ検出の促進効果を示す。
論文 参考訳(メタデータ) (2023-09-06T15:41:38Z) - Description-Enhanced Label Embedding Contrastive Learning for Text
Classification [65.01077813330559]
モデル学習プロセスにおける自己監督型学習(SSL)と新しい自己監督型関係関係(R2)分類タスクの設計
テキスト分類とR2分類を最適化対象として扱うテキスト分類のための関係学習ネットワーク(R2-Net)の関係について検討する。
ラベルセマンティックラーニングのためのマルチアスペクト記述を得るためのWordNetからの外部知識。
論文 参考訳(メタデータ) (2023-06-15T02:19:34Z) - Metaphor Detection via Explicit Basic Meanings Modelling [12.096691826237114]
本稿では,トレーニングセットからのリテラルアノテーションに基づいて,単語の基本的意味をモデル化するメタファ検出手法を提案する。
実験の結果,本手法はF1スコアにおいて,最先端の手法よりも1.0%優れていた。
論文 参考訳(メタデータ) (2023-05-26T21:25:05Z) - Advancing Incremental Few-shot Semantic Segmentation via Semantic-guided
Relation Alignment and Adaptation [98.51938442785179]
増分的な数ショットセマンティックセマンティックセマンティクスは、セマンティクスセマンティクスモデルを新しいクラスに漸進的に拡張することを目的としている。
このタスクは、データ不均衡のため、ベースクラスと新しいクラスの間で深刻な意味認識の問題に直面します。
本稿では,従来の意味情報のガイダンスを完全に考慮した意味誘導型関係調整適応法を提案する。
論文 参考訳(メタデータ) (2023-05-18T10:40:52Z) - SemanticAC: Semantics-Assisted Framework for Audio Classification [13.622344835167997]
音声分類のためのセマンティックACを提案する。
我々は、ラベルから豊富な意味を抽出し、音声信号とそのラベル間の意味的一貫性を最適化するために、言語モデルを用いる。
提案手法は、比較音声分類法よりも一貫して優れている。
論文 参考訳(メタデータ) (2023-02-12T15:30:28Z) - Classifying text using machine learning models and determining
conversation drift [4.785406121053965]
様々な種類のテキストの分析は、意味的意味と関連性の両方を理解するのに有用である。
テキスト分類は文書を分類する方法である。
コンピュータテキスト分類と自然言語処理を組み合わせて、テキストを集約して分析する。
論文 参考訳(メタデータ) (2022-11-15T18:09:45Z) - Sentiment-Aware Word and Sentence Level Pre-training for Sentiment
Analysis [64.70116276295609]
SentiWSPは、WordレベルとSentenceレベルの事前トレーニングタスクを組み合わせた、Sentiment対応の事前トレーニング言語モデルである。
SentiWSPは、様々な文レベルおよびアスペクトレベルの感情分類ベンチマーク上で、最先端のパフォーマンスを新たに達成する。
論文 参考訳(メタデータ) (2022-10-18T12:25:29Z) - Large Scale Substitution-based Word Sense Induction [48.49573297876054]
本稿では,事前学習されたマスキング言語モデル(MLM)に基づく単語センス誘導手法を提案する。
その結果、コーパス由来の感覚インベントリに基づいて感覚タグ付けされ、各感覚が指示語に関連付けられているコーパスとなる。
本手法を用いた英語ウィキペディアの評価では,Babelfy などの WSD 手法と比較しても,誘導された感覚とインスタンスごとの感覚代入の両方が高品質であることがわかった。
論文 参考訳(メタデータ) (2021-10-14T19:40:37Z) - Sentiment Analysis in Poems in Misurata Sub-dialect -- A Sentiment
Detection in an Arabic Sub-dialect [0.0]
この研究は、リビアで話されているミシュラタ・アラビア語サブ方言で書かれた詩の感情を検出することに焦点を当てた。
データセットから感情を検出するために使用されるツールは、SklearnとMazajak sentiment tool 1.1である。
論文 参考訳(メタデータ) (2021-09-15T10:42:39Z) - Weakly-Supervised Aspect-Based Sentiment Analysis via Joint
Aspect-Sentiment Topic Embedding [71.2260967797055]
アスペクトベース感情分析のための弱教師付きアプローチを提案する。
We learn sentiment, aspects> joint topic embeddeds in the word embedding space。
次に、ニューラルネットワークを用いて単語レベルの識別情報を一般化する。
論文 参考訳(メタデータ) (2020-10-13T21:33:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。