論文の概要: ContrastWSD: Enhancing Metaphor Detection with Word Sense Disambiguation Following the Metaphor Identification Procedure
- arxiv url: http://arxiv.org/abs/2309.03103v2
- Date: Sat, 23 Mar 2024 03:15:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-27 03:17:47.884094
- Title: ContrastWSD: Enhancing Metaphor Detection with Word Sense Disambiguation Following the Metaphor Identification Procedure
- Title(参考訳): コントラストWSD:メタファー同定法による単語センスの曖昧化によるメタファー検出の促進
- Authors: Mohamad Elzohbi, Richard Zhao,
- Abstract要約: メタファー識別法(MIP)と単語センス曖昧化(WSD)を統合したRoBERTaを用いたメタファメタメタファ検出モデルを提案する。
WSDモデルから派生した単語感覚を利用することで、メタファ検出プロセスを強化し、他の手法より優れる。
我々は,様々なベンチマークデータセットに対するアプローチを評価し,それを強力なベースラインと比較し,メタファ検出の促進効果を示す。
- 参考スコア(独自算出の注目度): 1.03590082373586
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents ContrastWSD, a RoBERTa-based metaphor detection model that integrates the Metaphor Identification Procedure (MIP) and Word Sense Disambiguation (WSD) to extract and contrast the contextual meaning with the basic meaning of a word to determine whether it is used metaphorically in a sentence. By utilizing the word senses derived from a WSD model, our model enhances the metaphor detection process and outperforms other methods that rely solely on contextual embeddings or integrate only the basic definitions and other external knowledge. We evaluate our approach on various benchmark datasets and compare it with strong baselines, indicating the effectiveness in advancing metaphor detection.
- Abstract(参考訳): 本稿では,メタファー識別法(MIP)とワードセンス曖昧化(WSD)を統合したRoBERTaを用いたメタファ検出モデルであるContrastWSDを提案する。
WSDモデルから派生した単語感覚を利用することで、メタファ検出プロセスを強化し、文脈的な埋め込みのみに依存したり、基本的な定義や外部知識のみを統合する他の手法より優れています。
我々は,様々なベンチマークデータセットに対するアプローチを評価し,それを強力なベースラインと比較し,メタファ検出の促進効果を示す。
関連論文リスト
- Conjuring Semantic Similarity [59.18714889874088]
2つのテキスト表現間の意味的類似性は、潜伏者の「意味」の間の距離を測定する
テキスト表現間の意味的類似性は、他の表現を言い換えるのではなく、それらが引き起こすイメージに基づいている、という新しいアプローチを提案する。
提案手法は,人間の注釈付きスコアに適合するだけでなく,テキスト条件付き生成モデル評価のための新たな道を開く意味的類似性に関する新たな視点を提供する。
論文 参考訳(メタデータ) (2024-10-21T18:51:34Z) - Metaphor Detection via Explicit Basic Meanings Modelling [12.096691826237114]
本稿では,トレーニングセットからのリテラルアノテーションに基づいて,単語の基本的意味をモデル化するメタファ検出手法を提案する。
実験の結果,本手法はF1スコアにおいて,最先端の手法よりも1.0%優れていた。
論文 参考訳(メタデータ) (2023-05-26T21:25:05Z) - Metaphorical Polysemy Detection: Conventional Metaphor meets Word Sense
Disambiguation [9.860944032009847]
言語学者は、NLPのメタファ検出タスクが考慮しない、新しいメタファと従来のメタファを区別する。
本稿では,従来のメタファをこのような方法で扱う際の限界について検討する。
我々は、英語のWordNetにおける従来のメタファーを識別する最初のMPDモデルを開発した。
論文 参考訳(メタデータ) (2022-12-16T10:39:22Z) - On the Impact of Temporal Representations on Metaphor Detection [1.6959319157216468]
メタファー検出のための最先端のアプローチは、ニューラルネットワークに基づくシーケンシャルなメタファー分類器を使用して、リテラル(リテラル、またはコア)の意味と文脈的意味を比較する。
本研究では, 時間的, 静的な単語の埋め込みを, 意味の表現に用い, 詳細な探索分析によるメタファ検出課題について検討する。
その結果,異なる単語の埋め込みがメタファー検出タスクや時間的単語の埋め込みに影響を及ぼすことが示唆された。
論文 参考訳(メタデータ) (2021-11-05T08:43:21Z) - Meta-Learning with Variational Semantic Memory for Word Sense
Disambiguation [56.830395467247016]
メタ学習環境におけるWSDのセマンティックメモリモデルを提案する。
我々のモデルは階層的変動推論に基づいており、ハイパーネットワークを介して適応的なメモリ更新ルールを組み込んでいる。
極めて少ないシナリオでの効果的な学習を支援するために,本モデルがWSDで最先端の技術を数ショットで実現していることを示す。
論文 参考訳(メタデータ) (2021-06-05T20:40:01Z) - Metaphor Generation with Conceptual Mappings [58.61307123799594]
我々は、関連する動詞を置き換えることで、リテラル表現を与えられた比喩文を生成することを目指している。
本稿では,認知領域間の概念マッピングを符号化することで生成過程を制御することを提案する。
教師なしCM-Lexモデルは,近年のディープラーニングメタファ生成システムと競合することを示す。
論文 参考訳(メタデータ) (2021-06-02T15:27:05Z) - MelBERT: Metaphor Detection via Contextualized Late Interaction using
Metaphorical Identification Theories [5.625405679356158]
本稿では,BERT(MelBERT)上のメタファ認識遅延相互作用という,新しいメタファ検出モデルを提案する。
我々のモデルは文脈化された単語表現を利用するだけでなく、文脈的意味とリテラル的意味を区別する言語的メタファー識別理論の利点も活用している。
論文 参考訳(メタデータ) (2021-04-28T07:52:01Z) - Understanding Synonymous Referring Expressions via Contrastive Features [105.36814858748285]
画像とオブジェクトインスタンスレベルでのコントラスト機能を学ぶためのエンドツーエンドのトレーニング可能なフレームワークを開発しています。
提案アルゴリズムをいくつかのベンチマークデータセットで評価するための広範囲な実験を行った。
論文 参考訳(メタデータ) (2021-04-20T17:56:24Z) - Introducing Syntactic Structures into Target Opinion Word Extraction
with Deep Learning [89.64620296557177]
目的語抽出のためのディープラーニングモデルに文の構文構造を組み込むことを提案する。
また,ディープラーニングモデルの性能向上のために,新たな正規化手法を導入する。
提案モデルは,4つのベンチマークデータセット上での最先端性能を広範囲に解析し,達成する。
論文 参考訳(メタデータ) (2020-10-26T07:13:17Z) - Metaphor Detection using Deep Contextualized Word Embeddings [0.0]
本稿では, 単語埋め込み, 双方向LSTM, マルチヘッドアテンション機構からなるエンドツーエンド手法を提案する。
本手法では,フレーズの比喩性を検出するために,入力特徴として生のテキストシーケンスのみを必要とする。
論文 参考訳(メタデータ) (2020-09-26T11:00:35Z) - Metaphoric Paraphrase Generation [58.592750281138265]
クラウドソーシングを用いてその結果を評価し,メタファー的パラフレーズを評価するための自動指標を開発する。
語彙置換ベースラインは正確なパラフレーズを生成できるが、比喩的でないことが多い。
メタファーマスキングモデルでは,メタファー文の生成に優れ,流布やパラフレーズの品質に関してはほぼ同等に機能する。
論文 参考訳(メタデータ) (2020-02-28T16:30:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。