論文の概要: Towards Robust Multimodal Physiological Foundation Models: Handling Arbitrary Missing Modalities
- arxiv url: http://arxiv.org/abs/2504.19596v1
- Date: Mon, 28 Apr 2025 09:00:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:54.371678
- Title: Towards Robust Multimodal Physiological Foundation Models: Handling Arbitrary Missing Modalities
- Title(参考訳): ロバストなマルチモーダル生理基盤モデルに向けて:任意欠落モードの扱い
- Authors: Xi Fu, Wei-Bang Jiang, Yi Ding, Cuntai Guan,
- Abstract要約: 生理オムニ (Phylo Omni) は、マルチモーダルな生理的信号解析の基礎モデルである。
分離されたマルチモーダル・トークンーザを訓練し、マスクされた信号の事前訓練を可能にする。
最先端のパフォーマンスを達成しつつ、モダリティの欠如に対して強い堅牢性を維持します。
- 参考スコア(独自算出の注目度): 9.785262633953794
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multimodal physiological signals, such as EEG, ECG, EOG, and EMG, are crucial for healthcare and brain-computer interfaces. While existing methods rely on specialized architectures and dataset-specific fusion strategies, they struggle to learn universal representations that generalize across datasets and handle missing modalities at inference time. To address these issues, we propose PhysioOmni, a foundation model for multimodal physiological signal analysis that models both homogeneous and heterogeneous features to decouple multimodal signals and extract generic representations while maintaining compatibility with arbitrary missing modalities. PhysioOmni trains a decoupled multimodal tokenizer, enabling masked signal pre-training via modality-invariant and modality-specific objectives. To ensure adaptability to diverse and incomplete modality combinations, the pre-trained encoders undergo resilient fine-tuning with prototype alignment on downstream datasets. Extensive experiments on four downstream tasks, emotion recognition, sleep stage classification, motor prediction, and mental workload detection, demonstrate that PhysioOmni achieves state-of-the-art performance while maintaining strong robustness to missing modalities. Our code and model weights will be released.
- Abstract(参考訳): 脳波、心電図、心電図、心電図、心電図などのマルチモーダルな生理信号は、医療や脳とコンピュータのインターフェイスにとって不可欠である。
既存のメソッドは特別なアーキテクチャとデータセット固有の融合戦略に依存しているが、データセットをまたいだ普遍的な表現を学び、推論時に欠落したモダリティを扱うのに苦労している。
これらの問題に対処するために,同種特徴と異種特徴の両方をモデル化し,任意のモダリティとの整合性を維持しつつ,汎用表現を抽出する,多様生理信号解析の基礎モデルであるPhyloOmniを提案する。
PhysioOmniは分離されたマルチモーダル・トークンーザを訓練し、モダリティ不変およびモダリティ固有の目的を通じてマスクされた信号の事前訓練を可能にする。
多様性と不完全なモダリティの組み合わせへの適応性を確保するために、事前訓練されたエンコーダは、下流データセット上のプロトタイプアライメントとレジリエントな微調整を行う。
4つの下流タスク、感情認識、睡眠ステージ分類、運動予測、メンタルワークロード検出に関する広範囲な実験は、PhyloOmniが最先端のパフォーマンスを達成しつつ、欠落したモダリティに対する強い堅牢性を維持していることを実証している。
コードとモデルの重み付けがリリースされます。
関連論文リスト
- Multimodal Masked Autoencoder Pre-training for 3D MRI-Based Brain Tumor Analysis with Missing Modalities [0.0]
BM-MAEはマルチモーダルMRIデータに適したマスク付き画像モデリング事前学習戦略である。
利用可能なモダリティの組み合わせにシームレスに適応し、モダリティ内情報とモダリティ間情報の両方をキャプチャするリッチな表現を抽出する。
欠落したモダリティを迅速かつ効率的に再構築し、その実用的価値を強調します。
論文 参考訳(メタデータ) (2025-05-01T14:51:30Z) - Back to Bayesics: Uncovering Human Mobility Distributions and Anomalies with an Integrated Statistical and Neural Framework [14.899157568336731]
DeepBayesicは、ベイズ原理とディープニューラルネットワークを統合し、基盤となる分布をモデル化する新しいフレームワークである。
我々は,いくつかのモビリティデータセットに対するアプローチを評価し,最先端の異常検出手法の大幅な改善を実証した。
論文 参考訳(メタデータ) (2024-10-01T19:02:06Z) - UNICORN: A Deep Learning Model for Integrating Multi-Stain Data in Histopathology [2.9389205138207277]
UNICORNは動脈硬化の重症度予測のための多段階組織学を処理できるマルチモーダルトランスフォーマーである。
このアーキテクチャは、2段階のエンドツーエンドのトレーニング可能なモデルと、トランスフォーマーの自己保持ブロックを利用する特殊なモジュールから構成される。
UNICORNは0.67の分類精度を達成し、他の最先端モデルを上回った。
論文 参考訳(メタデータ) (2024-09-26T12:13:52Z) - PMT: Progressive Mean Teacher via Exploring Temporal Consistency for Semi-Supervised Medical Image Segmentation [51.509573838103854]
医用画像セグメンテーションのための半教師付き学習フレームワークであるプログレッシブ平均教師(PMT)を提案する。
我々のPMTは、トレーニングプロセスにおいて、堅牢で多様な特徴を学習することで、高忠実な擬似ラベルを生成する。
CT と MRI の異なる2つのデータセットに対する実験結果から,本手法が最先端の医用画像分割法より優れていることが示された。
論文 参考訳(メタデータ) (2024-09-08T15:02:25Z) - Multimodal Physiological Signals Representation Learning via Multiscale Contrasting for Depression Recognition [18.65975882665568]
機能近赤外分光法(NIRS)や脳波法(EEG)などの生理的信号に基づく抑うつは大きな進歩を遂げている。
本稿では,抑うつ認識のためのマルチスケールコントラストを用いたアーキテクチャを用いたマルチモーダル生理学的信号表現学習フレームワークを提案する。
刺激タスクに関連する意味表現の学習を強化するために,意味コントラストモジュールを提案する。
論文 参考訳(メタデータ) (2024-06-22T09:28:02Z) - MMA-DFER: MultiModal Adaptation of unimodal models for Dynamic Facial Expression Recognition in-the-wild [81.32127423981426]
実世界のアプリケーションでは,音声およびビデオデータに基づくマルチモーダル感情認識が重要である。
近年の手法は、強力なマルチモーダルエンコーダの事前学習に自己教師付き学習(SSL)の進歩を活用することに重点を置いている。
SSL-pre-trained disimodal encoders を用いて,この問題に対する異なる視点とマルチモーダル DFER の性能向上について検討する。
論文 参考訳(メタデータ) (2024-04-13T13:39:26Z) - Joint Multimodal Transformer for Emotion Recognition in the Wild [49.735299182004404]
マルチモーダル感情認識(MMER)システムは、通常、単調なシステムよりも優れている。
本稿では,キーベースのクロスアテンションと融合するために,ジョイントマルチモーダルトランス (JMT) を利用するMMER法を提案する。
論文 参考訳(メタデータ) (2024-03-15T17:23:38Z) - HEALNet: Multimodal Fusion for Heterogeneous Biomedical Data [10.774128925670183]
本稿では,フレキシブルなマルチモーダル融合アーキテクチャであるHybrid Early-fusion Attention Learning Network (HEALNet)を提案する。
The Cancer Genome Atlas (TCGA) の4つのがんデータセットにおける全スライド画像と多モードデータを用いたマルチモーダルサバイバル解析を行った。
HEALNetは、他のエンドツーエンドの訓練された融合モデルと比較して最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-11-15T17:06:26Z) - Learning Multiscale Consistency for Self-supervised Electron Microscopy
Instance Segmentation [48.267001230607306]
本稿では,EMボリュームのマルチスケール一貫性を高める事前学習フレームワークを提案する。
当社のアプローチでは,強力なデータ拡張と弱いデータ拡張を統合することで,Siameseネットワークアーキテクチャを活用している。
効果的にボクセルと機能の一貫性をキャプチャし、EM分析のための転送可能な表現を学習する。
論文 参考訳(メタデータ) (2023-08-19T05:49:13Z) - Convolutional Monge Mapping Normalization for learning on sleep data [63.22081662149488]
我々は、CMMN(Convolutional Monge Mapping Normalization)と呼ばれる新しい手法を提案する。
CMMNは、そのパワースペクトル密度(PSD)をトレーニングデータに基づいて推定されるワッサーシュタインバリセンタに適応させるために、信号をフィルタリングする。
睡眠脳波データに関する数値実験により、CMMNはニューラルネットワークアーキテクチャから独立して、顕著で一貫したパフォーマンス向上をもたらすことが示された。
論文 参考訳(メタデータ) (2023-05-30T08:24:01Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
GradABM(GradABM)は、エージェントベースのモデリングのためのスケーラブルで微分可能な設計で、勾配に基づく学習と自動微分が可能である。
GradABMは、コモディティハードウェア上で数秒で数百万の人口をシミュレートし、ディープニューラルネットワークと統合し、異種データソースを取り込みます。
論文 参考訳(メタデータ) (2022-07-20T07:32:02Z) - Hi-Net: Hybrid-fusion Network for Multi-modal MR Image Synthesis [143.55901940771568]
マルチモーダルMR画像合成のためのHybrid-fusion Network(Hi-Net)を提案する。
当社のHi-Netでは,各モーダリティの表現を学習するために,モーダリティ特化ネットワークを用いている。
マルチモーダル合成ネットワークは、潜在表現と各モーダルの階層的特徴を密結合するように設計されている。
論文 参考訳(メタデータ) (2020-02-11T08:26:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。