Capturing Aerodynamic Characteristics of ATTAS Aircraft with Evolving Intelligent System
- URL: http://arxiv.org/abs/2504.19949v1
- Date: Mon, 28 Apr 2025 16:21:20 GMT
- Title: Capturing Aerodynamic Characteristics of ATTAS Aircraft with Evolving Intelligent System
- Authors: Aydoğan Soylu, Tufan Kumbasar,
- Abstract summary: This paper presents the novel deployment of an Evolving Type-2 Quantum Fuzzy Neural Network (eT2QFNN) for modeling the aerodynamic coefficients of the ATTAS aircraft.<n>eT2QFNN can represent the nonlinear aircraft model by creating multiple linear submodels with its rule-based structure.<n>It enhances robustness to uncertainties and data noise through its quantum membership functions.
- Score: 2.8391355909797644
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Accurate modeling of aerodynamic coefficients is crucial for understanding and optimizing the performance of modern aircraft systems. This paper presents the novel deployment of an Evolving Type-2 Quantum Fuzzy Neural Network (eT2QFNN) for modeling the aerodynamic coefficients of the ATTAS aircraft to express the aerodynamic characteristics. eT2QFNN can represent the nonlinear aircraft model by creating multiple linear submodels with its rule-based structure through an incremental learning strategy rather than a traditional batch learning approach. Moreover, it enhances robustness to uncertainties and data noise through its quantum membership functions, as well as its automatic rule-learning and parameter-tuning capabilities. During the estimation of the aerodynamic coefficients via the flight data of the ATTAS, two different studies are conducted in the training phase: one with a large amount of data and the other with a limited amount of data. The results show that the modeling performance of the eT2QFNN is superior in comparison to baseline counterparts. Furthermore, eT2QFNN estimated the aerodynamic model with fewer rules compared to Type-1 fuzzy counterparts. In addition, by applying the Delta method to the proposed approach, the stability and control derivatives of the aircraft are analyzed. The results prove the superiority of the proposed eT2QFNN in representing aerodynamic coefficients.
Related papers
- FuncGenFoil: Airfoil Generation and Editing Model in Function Space [63.274584650021744]
We introduce FuncGenFoil, a novel function-space generative model that directly learns functional airfoil geometries.<n> Empirical evaluations on the AFBench dataset demonstrate that FuncGenFoil improves upon state-of-the-art methods in airfoil generation.
arXiv Detail & Related papers (2025-02-15T07:56:58Z) - Fine-Tuning Hybrid Physics-Informed Neural Networks for Vehicle Dynamics Model Estimation [2.432448600920501]
This paper introduces the Fine-Tuning Hybrid Dynamics (FTHD) method, which integrates supervised and unsupervised Physics-Informed Neural Networks (PINNs)
FTHD fine-tunes a pre-trained Deep Dynamics Model (DDM) using a smaller training dataset, delivering superior performance compared to state-of-the-art methods.
An Extended Kalman Filter (EKF) is embedded within FTHD to effectively manage noisy real-world data, ensuring accurate denoising.
Results demonstrate that the hybrid approach significantly improves parameter estimation accuracy, even with reduced data, and outperforms existing models.
arXiv Detail & Related papers (2024-09-29T10:33:07Z) - Airfoil Diffusion: Denoising Diffusion Model For Conditional Airfoil Generation [7.136205674624813]
We introduce a data-driven methodology for airfoil generation using a diffusion model.<n>Trained on a dataset of preexisting airfoils, our model can generate an arbitrary number of new airfoils from random vectors.
arXiv Detail & Related papers (2024-08-28T16:12:16Z) - Efficient GPT Model Pre-training using Tensor Train Matrix
Representation [65.96485282393361]
Large-scale transformer models feature billions of parameters, leading to difficulties in their deployment and prohibitive training costs from scratch.
To reduce the number of parameters in the GPT-2 architecture, we replace the matrices of fully-connected layers with the corresponding Train Matrix(TTM) structure.
The resulting GPT-based model stores up to 40% fewer parameters, showing the perplexity comparable to the original model.
arXiv Detail & Related papers (2023-06-05T08:38:25Z) - Machine learning enhanced real-time aerodynamic forces prediction based
on sparse pressure sensor inputs [7.112725255953468]
This paper presents a data-driven aerodynamic force prediction model based on a small number of pressure sensors.
The model is tested on numerical and experimental dynamic stall data of a 2D NACA0015 airfoil, and numerical simulation data of dynamic stall of a 3D drone.
arXiv Detail & Related papers (2023-05-16T06:15:13Z) - Inferring Traffic Models in Terminal Airspace from Flight Tracks and
Procedures [52.25258289718559]
We propose a probabilistic model that can learn the variability from procedural data and flight tracks collected from radar surveillance data.
We show how a pairwise model can be used to generate traffic involving an arbitrary number of aircraft.
arXiv Detail & Related papers (2023-03-17T13:58:06Z) - Knowledge-embedded meta-learning model for lift coefficient prediction
of airfoils [25.546237636065182]
A knowledge-embedded meta learning model is developed to obtain the lift coefficients of an arbitrary supercritical airfoil under various angle of attacks.
Compared to the ordinary neural network, our proposed model can exhibit better generalization capability with competitive prediction accuracy.
Results show that the proposed model can tend to assess the influence of airfoil geometry to the physical characteristics.
arXiv Detail & Related papers (2023-03-06T02:47:31Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - Neural-Fly Enables Rapid Learning for Agile Flight in Strong Winds [96.74836678572582]
We present a learning-based approach that allows rapid online adaptation by incorporating pretrained representations through deep learning.
Neural-Fly achieves precise flight control with substantially smaller tracking error than state-of-the-art nonlinear and adaptive controllers.
arXiv Detail & Related papers (2022-05-13T21:55:28Z) - Neural Operator with Regularity Structure for Modeling Dynamics Driven
by SPDEs [70.51212431290611]
Partial differential equations (SPDEs) are significant tools for modeling dynamics in many areas including atmospheric sciences and physics.
We propose the Neural Operator with Regularity Structure (NORS) which incorporates the feature vectors for modeling dynamics driven by SPDEs.
We conduct experiments on various of SPDEs including the dynamic Phi41 model and the 2d Navier-Stokes equation.
arXiv Detail & Related papers (2022-04-13T08:53:41Z) - Airfoil's Aerodynamic Coefficients Prediction using Artificial Neural
Network [0.0]
Figuring out the right airfoil is a crucial step in the preliminary stage of any aerial vehicle design.
This study compares different network architectures and training datasets in an attempt to gain insight as to how the network perceives the given airfoil geometries.
arXiv Detail & Related papers (2021-09-24T19:07:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.