Research on Aerodynamic Performance Prediction of Airfoils Based on a Fusion Algorithm of Transformer and GAN
- URL: http://arxiv.org/abs/2506.06979v1
- Date: Sun, 08 Jun 2025 03:30:53 GMT
- Title: Research on Aerodynamic Performance Prediction of Airfoils Based on a Fusion Algorithm of Transformer and GAN
- Authors: MaolinYang, Yaohui Wang, Pingyu Jiang,
- Abstract summary: This study proposes a deep learning model, Deeptrans, based on the fusion of improved Transformer and generative Adversarial network (GAN)<n>Experiments show that the MSE loss of Deeptrans on the verification set is reduced to 5.6*10-6, and the single-sample prediction time is only 0.0056 seconds.
- Score: 10.711056540184023
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predicting of airfoil aerodynamic performance is a key part of aircraft design optimization, but the traditional methods (such as wind tunnel test and CFD simulation) have the problems of high cost and low efficiency, and the existing data-driven models face the challenges of insufficient accuracy and strong data dependence in multi-objective prediction. Therefore, this study proposes a deep learning model, Deeptrans, based on the fusion of improved Transformer and generative Adversarial network (GAN), which aims to predict the multi-parameter aerodynamic performance of airfoil efficiently. By constructing a large-scale data set and designing a model structure that integrates a Transformer coding-decoding framework and confrontation training, synchronous and high-precision prediction of aerodynamic parameters is realized. Experiments show that the MSE loss of Deeptrans on the verification set is reduced to 5.6*10-6, and the single-sample prediction time is only 0.0056 seconds, which is nearly 700 times more efficient than the traditional CFD method. Horizontal comparison shows that the prediction accuracy is significantly better than the original Transformer, GAN, and VAE models. This study provides an efficient data-driven solution for airfoil aerodynamic performance prediction and a new idea for deep learning modeling complex flow problems.
Related papers
- Fusing CFD and measurement data using transfer learning [49.1574468325115]
We introduce a non-linear method based on neural networks combining simulation and measurement data via transfer learning.<n>In a first step, the neural network is trained on simulation data to learn spatial features of the distributed quantities.<n>The second step involves transfer learning on the measurement data to correct for systematic errors between simulation and measurement by only re-training a small subset of the entire neural network model.
arXiv Detail & Related papers (2025-07-28T07:21:46Z) - Improving Medium Range Severe Weather Prediction through Transformer Post-processing of AI Weather Forecasts [39.58317527488534]
This study introduces a novel approach leveraging decoder-only transformer networks to post-process AI-based weather forecasts.<n>Our method treats forecast lead times as sequential tokens'', enabling the transformer to learn complex temporal relationships.<n>Results demonstrate that the transformer-based post-processing significantly enhances forecast skill compared to dense neural networks.
arXiv Detail & Related papers (2025-05-16T23:22:07Z) - Capturing Aerodynamic Characteristics of ATTAS Aircraft with Evolving Intelligent System [2.8391355909797644]
This paper presents the novel deployment of an Evolving Type-2 Quantum Fuzzy Neural Network (eT2QFNN) for modeling the aerodynamic coefficients of the ATTAS aircraft.<n>eT2QFNN can represent the nonlinear aircraft model by creating multiple linear submodels with its rule-based structure.<n>It enhances robustness to uncertainties and data noise through its quantum membership functions.
arXiv Detail & Related papers (2025-04-28T16:21:20Z) - DrivAer Transformer: A high-precision and fast prediction method for vehicle aerodynamic drag coefficient based on the DrivAerNet++ dataset [1.184330339427731]
This study proposes a point cloud learning framework called DrivAer Transformer.<n>The DAT structure uses the DrivAerNet++ dataset, which contains high-fidelity CFD data of industrial-standard 3D vehicle shapes.<n>The framework is expected to accelerate the vehicle design process and improve development efficiency.
arXiv Detail & Related papers (2025-04-11T02:50:38Z) - Visual Fourier Prompt Tuning [63.66866445034855]
We propose the Visual Fourier Prompt Tuning (VFPT) method as a general and effective solution for adapting large-scale transformer-based models.
Our approach incorporates the Fast Fourier Transform into prompt embeddings and harmoniously considers both spatial and frequency domain information.
Our results demonstrate that our approach outperforms current state-of-the-art baselines on two benchmarks.
arXiv Detail & Related papers (2024-11-02T18:18:35Z) - Forecast-PEFT: Parameter-Efficient Fine-Tuning for Pre-trained Motion Forecasting Models [68.23649978697027]
Forecast-PEFT is a fine-tuning strategy that freezes the majority of the model's parameters, focusing adjustments on newly introduced prompts and adapters.
Our experiments show that Forecast-PEFT outperforms traditional full fine-tuning methods in motion prediction tasks.
Forecast-FT further improves prediction performance, evidencing up to a 9.6% enhancement over conventional baseline methods.
arXiv Detail & Related papers (2024-07-28T19:18:59Z) - Towards Long-Term predictions of Turbulence using Neural Operators [68.8204255655161]
It aims to develop reduced-order/surrogate models for turbulent flow simulations using Machine Learning.
Different model structures are analyzed, with U-NET structures performing better than the standard FNO in accuracy and stability.
arXiv Detail & Related papers (2023-07-25T14:09:53Z) - A Synergistic Framework Leveraging Autoencoders and Generative
Adversarial Networks for the Synthesis of Computational Fluid Dynamics
Results in Aerofoil Aerodynamics [0.5018156030818882]
This study proposes a novel approach that combines autoencoders and Generative Adversarial Networks (GANs) for the purpose of generating CFD results.
Our innovative framework harnesses the intrinsic capabilities of autoencoders to encode aerofoil geometries into a compressed and informative 20-length vector representation.
conditional GAN network adeptly translates this vector into precise pressure-distribution plots, accounting for fixed wind velocity, angle of attack, and turbulence level specifications.
arXiv Detail & Related papers (2023-05-28T09:46:18Z) - Machine learning enhanced real-time aerodynamic forces prediction based
on sparse pressure sensor inputs [7.112725255953468]
This paper presents a data-driven aerodynamic force prediction model based on a small number of pressure sensors.
The model is tested on numerical and experimental dynamic stall data of a 2D NACA0015 airfoil, and numerical simulation data of dynamic stall of a 3D drone.
arXiv Detail & Related papers (2023-05-16T06:15:13Z) - Transform Once: Efficient Operator Learning in Frequency Domain [69.74509540521397]
We study deep neural networks designed to harness the structure in frequency domain for efficient learning of long-range correlations in space or time.
This work introduces a blueprint for frequency domain learning through a single transform: transform once (T1)
arXiv Detail & Related papers (2022-11-26T01:56:05Z) - Machine Learning model for gas-liquid interface reconstruction in CFD
numerical simulations [59.84561168501493]
The volume of fluid (VoF) method is widely used in multi-phase flow simulations to track and locate the interface between two immiscible fluids.
A major bottleneck of the VoF method is the interface reconstruction step due to its high computational cost and low accuracy on unstructured grids.
We propose a machine learning enhanced VoF method based on Graph Neural Networks (GNN) to accelerate the interface reconstruction on general unstructured meshes.
arXiv Detail & Related papers (2022-07-12T17:07:46Z) - Airfoil's Aerodynamic Coefficients Prediction using Artificial Neural
Network [0.0]
Figuring out the right airfoil is a crucial step in the preliminary stage of any aerial vehicle design.
This study compares different network architectures and training datasets in an attempt to gain insight as to how the network perceives the given airfoil geometries.
arXiv Detail & Related papers (2021-09-24T19:07:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.