Graph Neural Network Prediction of Nonlinear Optical Properties
- URL: http://arxiv.org/abs/2504.19987v1
- Date: Mon, 28 Apr 2025 17:03:22 GMT
- Title: Graph Neural Network Prediction of Nonlinear Optical Properties
- Authors: Yomn Alkabakibi, Congwei Xie, Artem R. Oganov,
- Abstract summary: We present a deep learning approach using the Atomistic Line Graph Network (ALIGNN) to predict NLO properties.<n>Our results demonstrate that the model achieves 82.5% accuracy at a tolerated absolute error up to 1 pm/V and relative error not exceeding 0.5.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Nonlinear optical (NLO) materials for generating lasers via second harmonic generation (SHG) are highly sought in today's technology. However, discovering novel materials with considerable SHG is challenging due to the time-consuming and costly nature of both experimental methods and first-principles calculations. In this study, we present a deep learning approach using the Atomistic Line Graph Neural Network (ALIGNN) to predict NLO properties. Sourcing data from the Novel Opto-Electronic Materials Discovery (NOEMD) database and using the Kurtz-Perry (KP) coefficient as the key target, we developed a robust model capable of accurately estimating nonlinear optical responses. Our results demonstrate that the model achieves 82.5% accuracy at a tolerated absolute error up to 1 pm/V and relative error not exceeding 0.5. This work highlights the potential of deep learning in accelerating the discovery and design of advanced optical materials with desired properties.
Related papers
- Latent Tensor Factorization with Nonlinear PID Control for Missing Data Recovery in Non-Intrusive Load Monitoring [2.94258758663678]
Non-Intrusive Load Monitoring (NILM) has emerged as a key smart grid technology.<n>This paper proposes a Proportional-integral-derivative (PID)-Incorporated Latent factorization of tensors (NPIL) model with two-fold ideas.<n> Experimental results on real-world NILM datasets demonstrate that the proposed NPIL model surpasses state-of-the-art models in convergence rate and accuracy when predicting the missing NILM data.
arXiv Detail & Related papers (2025-04-18T05:48:14Z) - HARDCORE: H-field and power loss estimation for arbitrary waveforms with
residual, dilated convolutional neural networks in ferrite cores [1.3437002403398262]
MagNet Challenge 2023 calls upon competitors to develop data-driven models for material-specific, waveform-agnostic estimation of steady-state power losses in toroidal ferrite cores.
HardCORE approach shows that a residual convolutional neural network with physics-informed extensions can serve this task efficiently when trained on observational data beforehand.
A model is trained from scratch for each material, while the topology remains the same.
arXiv Detail & Related papers (2024-01-21T13:24:41Z) - Data Distillation for Neural Network Potentials toward Foundational
Dataset [6.373914211316965]
generative models can swiftly propose promising materials for targeted applications.
However, the predicted properties of materials through the generative models often do not match with calculated properties through ab initio calculations.
This study utilized extended ensemble molecular dynamics (MD) to secure a broad range of liquid- and solid-phase configurations in one of the metallic systems, nickel.
We found that the NNP trained from the distilled data could predict different energy-minimized closed-pack crystal structures even though those structures were not explicitly part of the initial data.
arXiv Detail & Related papers (2023-11-09T14:41:45Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Understanding of the properties of neural network approaches for
transient light curve approximations [37.91290708320157]
This paper presents a search for the best-performing methods to approximate the observed light curves over time and wavelength.
Test datasets include simulated PLAsTiCC and real Zwicky Transient Facility Bright Transient Survey light curves of transients.
arXiv Detail & Related papers (2022-09-15T18:00:08Z) - Human Trajectory Prediction via Neural Social Physics [63.62824628085961]
Trajectory prediction has been widely pursued in many fields, and many model-based and model-free methods have been explored.
We propose a new method combining both methodologies based on a new Neural Differential Equation model.
Our new model (Neural Social Physics or NSP) is a deep neural network within which we use an explicit physics model with learnable parameters.
arXiv Detail & Related papers (2022-07-21T12:11:18Z) - Supernova Light Curves Approximation based on Neural Network Models [53.180678723280145]
Photometric data-driven classification of supernovae becomes a challenge due to the appearance of real-time processing of big data in astronomy.
Recent studies have demonstrated the superior quality of solutions based on various machine learning models.
We study the application of multilayer perceptron (MLP), bayesian neural network (BNN), and normalizing flows (NF) to approximate observations for a single light curve.
arXiv Detail & Related papers (2022-06-27T13:46:51Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
We develop a novel approach that can significantly accelerate the training of Physics-Informed Neural Networks.
In particular, we parameterize the PDE solution by the Gaussian smoothed model and show that, derived from Stein's Identity, the second-order derivatives can be efficiently calculated without back-propagation.
Experimental results show that our proposed method can achieve competitive error compared to standard PINN training but is two orders of magnitude faster.
arXiv Detail & Related papers (2022-02-18T18:07:54Z) - Prediction of the electron density of states for crystalline compounds
with Atomistic Line Graph Neural Networks (ALIGNN) [0.0]
We present an extension of the recently developed Atomistic Line Graph Neural Network (ALIGNN) to accurately predict DOS of a large set of material unit cell structures.
We evaluate two methods of representation of the target quantity - a direct discretized spectrum, and a compressed low-dimensional representation obtained using an autoencoder.
arXiv Detail & Related papers (2022-01-20T18:28:22Z) - NeRF in detail: Learning to sample for view synthesis [104.75126790300735]
Neural radiance fields (NeRF) methods have demonstrated impressive novel view synthesis.
In this work we address a clear limitation of the vanilla coarse-to-fine approach -- that it is based on a performance and not trained end-to-end for the task at hand.
We introduce a differentiable module that learns to propose samples and their importance for the fine network, and consider and compare multiple alternatives for its neural architecture.
arXiv Detail & Related papers (2021-06-09T17:59:10Z) - Towards Reflectivity profile inversion through Artificial Neural
Networks [0.0]
The goal of Specular Neutron and X-ray Reflectometry is to infer materials Scattering Length Density profiles from experimental reflectivity curves.
This paper focuses on investigating an original approach to the ill-posed non-invertible problem which involves the use of Artificial Neural Networks.
arXiv Detail & Related papers (2020-10-15T10:09:09Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.