Socially-Aware Autonomous Driving: Inferring Yielding Intentions for Safer Interactions
- URL: http://arxiv.org/abs/2504.20004v1
- Date: Mon, 28 Apr 2025 17:24:04 GMT
- Title: Socially-Aware Autonomous Driving: Inferring Yielding Intentions for Safer Interactions
- Authors: Jing Wang, Yan Jin, Hamid Taghavifar, Fei Ding, Chongfeng Wei,
- Abstract summary: We propose a social intention estimation algorithm rooted in Directed Acyclic Graph (DAG) and a decision-making framework employing Deep Reinforcement Learning (DRL) algorithms.<n>To evaluate the method's performance, the proposed framework can be tested and applied in a lane-changing scenario within a simulated environment.
- Score: 7.735477839355801
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Since the emergence of autonomous driving technology, it has advanced rapidly over the past decade. It is becoming increasingly likely that autonomous vehicles (AVs) would soon coexist with human-driven vehicles (HVs) on the roads. Currently, safety and reliable decision-making remain significant challenges, particularly when AVs are navigating lane changes and interacting with surrounding HVs. Therefore, precise estimation of the intentions of surrounding HVs can assist AVs in making more reliable and safe lane change decision-making. This involves not only understanding their current behaviors but also predicting their future motions without any direct communication. However, distinguishing between the passing and yielding intentions of surrounding HVs still remains ambiguous. To address the challenge, we propose a social intention estimation algorithm rooted in Directed Acyclic Graph (DAG), coupled with a decision-making framework employing Deep Reinforcement Learning (DRL) algorithms. To evaluate the method's performance, the proposed framework can be tested and applied in a lane-changing scenario within a simulated environment. Furthermore, the experiment results demonstrate how our approach enhances the ability of AVs to navigate lane changes safely and efficiently on roads.
Related papers
- Heterogeneous Decision Making in Mixed Traffic: Uncertainty-aware Planning and Bounded Rationality [31.66608520780982]
We study heterogeneous decision making by automated vehicles (AVs) and human-driven vehicles (HVs) in a mixed traffic environment.<n>Our findings reveal some intriguing phenomena, such as Goodhart's Law in AV's learning performance and compounding effects in HV's decision making process.
arXiv Detail & Related papers (2025-02-25T00:32:33Z) - Automated Vehicles at Unsignalized Intersections: Safety and Efficiency Implications of Mixed-Human-Automated Traffic [6.9492069439607995]
The integration of automated vehicles (AVs) into transportation systems presents an unprecedented opportunity to enhance road safety and efficiency.<n>This study aims to bridge the gap by examining behavioral differences and adaptations of AVs and human-driven vehicles (HVs) at unsignalized intersections.<n>The findings reveal a paradox in mixed traffic flow: while AVs maintain larger safety margins, their conservative behavior can lead to unexpected situations for human drivers.
arXiv Detail & Related papers (2024-10-16T13:19:32Z) - Work-in-Progress: Crash Course: Can (Under Attack) Autonomous Driving Beat Human Drivers? [60.51287814584477]
This paper evaluates the inherent risks in autonomous driving by examining the current landscape of AVs.
We develop specific claims highlighting the delicate balance between the advantages of AVs and potential security challenges in real-world scenarios.
arXiv Detail & Related papers (2024-05-14T09:42:21Z) - A Counterfactual Safety Margin Perspective on the Scoring of Autonomous
Vehicles' Riskiness [52.27309191283943]
This paper presents a data-driven framework for assessing the risk of different AVs' behaviors.
We propose the notion of counterfactual safety margin, which represents the minimum deviation from nominal behavior that could cause a collision.
arXiv Detail & Related papers (2023-08-02T09:48:08Z) - Decision Making for Autonomous Driving in Interactive Merge Scenarios
via Learning-based Prediction [39.48631437946568]
This paper focuses on the complex task of merging into moving traffic where uncertainty emanates from the behavior of other drivers.
We frame the problem as a partially observable Markov decision process (POMDP) and solve it online with Monte Carlo tree search.
The solution to the POMDP is a policy that performs high-level driving maneuvers, such as giving way to an approaching car, keeping a safe distance from the vehicle in front or merging into traffic.
arXiv Detail & Related papers (2023-03-29T16:12:45Z) - Learning energy-efficient driving behaviors by imitating experts [75.12960180185105]
This paper examines the role of imitation learning in bridging the gap between control strategies and realistic limitations in communication and sensing.
We show that imitation learning can succeed in deriving policies that, if adopted by 5% of vehicles, may boost the energy-efficiency of networks with varying traffic conditions by 15% using only local observations.
arXiv Detail & Related papers (2022-06-28T17:08:31Z) - A Cooperation-Aware Lane Change Method for Autonomous Vehicles [16.937363492078426]
This paper presents a cooperation-aware lane change method utilizing interactions between vehicles.
We first propose an interactive trajectory prediction method to explore possible cooperations between an AV and the others.
We then propose a motion planning algorithm based on model predictive control (MPC), which incorporates AV's decision and surrounding vehicles' interactive behaviors into constraints.
arXiv Detail & Related papers (2022-01-26T04:45:45Z) - Safety-aware Motion Prediction with Unseen Vehicles for Autonomous
Driving [104.32241082170044]
We study a new task, safety-aware motion prediction with unseen vehicles for autonomous driving.
Unlike the existing trajectory prediction task for seen vehicles, we aim at predicting an occupancy map.
Our approach is the first one that can predict the existence of unseen vehicles in most cases.
arXiv Detail & Related papers (2021-09-03T13:33:33Z) - Learning Interaction-aware Guidance Policies for Motion Planning in
Dense Traffic Scenarios [8.484564880157148]
This paper presents a novel framework for interaction-aware motion planning in dense traffic scenarios.
We propose to learn, via deep Reinforcement Learning (RL), an interaction-aware policy providing global guidance about the cooperativeness of other vehicles.
The learned policy can reason and guide the local optimization-based planner with interactive behavior to pro-actively merge in dense traffic while remaining safe in case the other vehicles do not yield.
arXiv Detail & Related papers (2021-07-09T16:43:12Z) - Transferable Deep Reinforcement Learning Framework for Autonomous
Vehicles with Joint Radar-Data Communications [69.24726496448713]
We propose an intelligent optimization framework based on the Markov Decision Process (MDP) to help the AV make optimal decisions.
We then develop an effective learning algorithm leveraging recent advances of deep reinforcement learning techniques to find the optimal policy for the AV.
We show that the proposed transferable deep reinforcement learning framework reduces the obstacle miss detection probability by the AV up to 67% compared to other conventional deep reinforcement learning approaches.
arXiv Detail & Related papers (2021-05-28T08:45:37Z) - What-If Motion Prediction for Autonomous Driving [58.338520347197765]
Viable solutions must account for both the static geometric context, such as road lanes, and dynamic social interactions arising from multiple actors.
We propose a recurrent graph-based attentional approach with interpretable geometric (actor-lane) and social (actor-actor) relationships.
Our model can produce diverse predictions conditioned on hypothetical or "what-if" road lanes and multi-actor interactions.
arXiv Detail & Related papers (2020-08-24T17:49:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.