論文の概要: Testing the Limit of Atmospheric Predictability with a Machine Learning Weather Model
- arxiv url: http://arxiv.org/abs/2504.20238v1
- Date: Mon, 28 Apr 2025 20:18:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:54.66308
- Title: Testing the Limit of Atmospheric Predictability with a Machine Learning Weather Model
- Title(参考訳): 機械学習気象モデルによる大気予測可能性限界の検証
- Authors: P. Trent Vonich, Gregory J. Hakim,
- Abstract要約: 我々は2020年の2日間の予測に勾配に基づく手法を用いて予測初期条件を最適化する。
このアプローチは10日で平均86%のエラー削減を達成し、スキルは30日以上続く。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Atmospheric predictability research has long held that the limit of skillful deterministic weather forecasts is about 14 days. We challenge this limit using GraphCast, a machine-learning weather model, by optimizing forecast initial conditions using gradient-based techniques for twice-daily forecasts spanning 2020. This approach yields an average error reduction of 86% at 10 days, with skill lasting beyond 30 days. Mean optimal initial-condition perturbations reveal large-scale, spatially coherent corrections to ERA5, primarily reflecting an intensification of the Hadley circulation. Forecasts using GraphCast-optimal initial conditions in the Pangu-Weather model achieve a 21% error reduction, peaking at 4 days, indicating that analysis corrections reflect a combination of both model bias and a reduction in analysis error. These results demonstrate that, given accurate initial conditions, skillful deterministic forecasts are consistently achievable far beyond two weeks, challenging long-standing assumptions about the limits of atmospheric predictability.
- Abstract(参考訳): 大気の予測可能性の研究は、熟練した決定論的な天気予報の限界は約14日であると長い間考えてきた。
我々は、2020年の2回の日次予測に勾配に基づく手法を用いて予測初期条件を最適化し、機械学習天気モデルであるGraphCastを用いてこの限界に挑戦する。
このアプローチは10日で平均86%のエラー削減を達成し、スキルは30日以上続く。
平均最適初期条件摂動は、主にハドリー循環の強化を反映した大規模な空間的コヒーレントな補正をERA5に示している。
Pangu-WeatherモデルにおけるGraphCast-Optimal初期条件を用いた予測は、21%の誤差削減を実現し、4日間にピークし、解析補正がモデルバイアスと解析誤差の両組み合わせを反映していることを示す。
これらの結果は、正確な初期条件から、巧妙な決定論的予測は2週間以上にわたって一貫して達成可能であることを示し、大気の予測可能性の限界に関する長年の仮定に挑戦している。
関連論文リスト
- Evaluation of Tropical Cyclone Track and Intensity Forecasts from Artificial Intelligence Weather Prediction (AIWP) Models [0.6282171844772422]
4つのオープンソースAIWPモデルが検討されている(FourCastNetv1、FourCastNetv2-small、GraphCast-operational、Pangu-Weather)。
NHCモデルコンセンサスに対するAIWPモデルの貢献も評価した。
かなりの負の強度バイアスにもかかわらず、AIWPモデルは強度のコンセンサスに中立的な影響を与える。
論文 参考訳(メタデータ) (2024-09-08T22:58:46Z) - Lightning-Fast Convective Outlooks: Predicting Severe Convective Environments with Global AI-based Weather Models [0.08271752505511926]
激しい対流嵐は最も危険な気象現象であり、正確な予測は影響を緩和する。
最近リリースされたAIベースの天気モデルスイートは、中距離の予測を数秒で生成する。
本稿では,再解析とECMWFの運用数値天気予報モデルISSに対して,対流パラメータを対象とした3つのAIモデルの予測能力を評価する。
論文 参考訳(メタデータ) (2024-06-13T07:46:03Z) - Uncertainty quantification for data-driven weather models [0.0]
本研究では,現在最先端の決定論的データ駆動気象モデルであるPangu-Weatherから確率的天気予報を生成するための不確実性定量化手法について検討・比較する。
具体的には,摂動によるアンサンブル予測を初期条件と比較し,予測の不確実性を定量化する手法を提案する。
欧州における選択された気象変数の中距離予測のケーススタディにおいて,不確実な定量化手法を用いてパング・ウェザーモデルを用いて得られた確率的予測は,有望な結果を示す。
論文 参考訳(メタデータ) (2024-03-20T10:07:51Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
非対称な最適化を行い、極端な天気予報を得るために極端な値を強調する新しい損失関数であるExlossを導入する。
また,複数のランダムサンプルを用いて予測結果の不確かさをキャプチャするExBoosterについても紹介する。
提案手法は,上位中距離予測モデルに匹敵する全体的な予測精度を維持しつつ,極端気象予測における最先端性能を達成することができる。
論文 参考訳(メタデータ) (2024-02-02T10:34:13Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
この研究は、データ駆動型世界天気予報モデルであるFengWu-GHRを、0.09$circ$水平解像度で実行した。
低解像度モデルから事前知識を継承することにより、MLベースの高解像度予測を操作するための扉を開く新しいアプローチを導入する。
2022年の天気予報は、FengWu-GHRがIFS-HRESよりも優れていることを示している。
論文 参考訳(メタデータ) (2024-01-28T13:23:25Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
農業計画や保険には1年前から予測される高品質の干ばつが不可欠だ。
私たちは、体系的なエンドツーエンドアプローチを採用するエンドツーエンドアプローチを導入することで、干ばつデータに取り組みます。
主な発見は、TransformerモデルであるEarthFormerが、正確な短期(最大6ヶ月)の予測を行う際の例外的なパフォーマンスである。
論文 参考訳(メタデータ) (2023-09-12T13:28:06Z) - FuXi: A cascade machine learning forecasting system for 15-day global
weather forecast [34.812266901884996]
FuXiは、時間分解能6時間、空間分解能0.25度で世界15日間の天気予報を提供する機械学習天気予報システムである。
FuXiは15日間の予測でECMWF EMと同等の性能を示しており、この達成を達成したMLベースの天気予報システムとしては初めてのものである。
論文 参考訳(メタデータ) (2023-06-22T13:34:26Z) - FengWu: Pushing the Skillful Global Medium-range Weather Forecast beyond
10 Days Lead [93.67314652898547]
人工知能(AI)に基づく高度データ駆動型中距離気象予報システムFengWuについて紹介する。
FengWuは大気力学を正確に再現し、0.25度緯度で37の垂直レベルで将来の陸と大気の状態を予測することができる。
その結果、FengWuは予測能力を大幅に向上させ、熟練した中距離気象予報を10.75日間のリードまで拡張できることがわかった。
論文 参考訳(メタデータ) (2023-04-06T09:16:39Z) - GraphCast: Learning skillful medium-range global weather forecasting [107.40054095223779]
我々は、再分析データから直接トレーニングできる「GraphCast」と呼ばれる機械学習ベースの手法を導入する。
全世界で10日以上、0.25度で、数百の気象変動を1分以内で予測する。
我々は,GraphCastが1380の検証対象の90%において,最も正確な運用決定システムよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-12-24T18:15:39Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
本研究では,500hPaの圧力レベル,2m温度,24時間の総降水量を予測するために,条件付き深部畳み込み生成対向ネットワークを用いた。
提案されたモデルは、2019年に関連する気象分野を予測することを目的として、2015年から2018年までの4年間のERA5の再分析データに基づいて訓練されている。
論文 参考訳(メタデータ) (2020-06-13T20:53:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。