Sparse mixed linear modeling with anchor-based guidance for high-entropy alloy discovery
- URL: http://arxiv.org/abs/2504.20354v1
- Date: Tue, 29 Apr 2025 01:44:15 GMT
- Title: Sparse mixed linear modeling with anchor-based guidance for high-entropy alloy discovery
- Authors: Ryo Murakami, Seiji Miura, Akihiro Endo, Satoshi Minamoto,
- Abstract summary: In this study, we focus on local data structures that emerge from the greedy search behavior inherent to experimental data acquisition.<n>We develop an algorithm that simultaneously performs prediction and feature selection.<n>Through a case study on high-entropy alloys, this study introduces a method that combines anchor-guided clustering and sparse linear modeling.
- Score: 0.12499537119440242
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: High-entropy alloys have attracted attention for their exceptional mechanical properties and thermal stability. However, the combinatorial explosion in the number of possible elemental compositions renders traditional trial-and-error experimental approaches highly inefficient for materials discovery. To solve this problem, machine learning techniques have been increasingly employed for property prediction and high-throughput screening. Nevertheless, highly accurate nonlinear models often suffer from a lack of interpretability, which is a major limitation. In this study, we focus on local data structures that emerge from the greedy search behavior inherent to experimental data acquisition. By introducing a linear and low-dimensional mixture regression model, we strike a balance between predictive performance and model interpretability. In addition, we develop an algorithm that simultaneously performs prediction and feature selection by considering multiple candidate descriptors. Through a case study on high-entropy alloys, this study introduces a method that combines anchor-guided clustering and sparse linear modeling to address biased data structures arising from greedy exploration in materials science.
Related papers
- Symmetry-Informed Graph Neural Networks for Carbon Dioxide Isotherm and Adsorption Prediction in Aluminum-Substituted Zeolites [3.6443770850509423]
We introduce SymGNN, a graph neural network architecture that leverages material symmetries to improve adsorbing property prediction.<n>By incorporating symmetry operations into the message-passing mechanism, our model enhances parameter sharing across different topologies, leading to improved generalization.
arXiv Detail & Related papers (2025-03-26T17:08:28Z) - Causal Discovery from Data Assisted by Large Language Models [50.193740129296245]
It is essential to integrate experimental data with prior domain knowledge for knowledge driven discovery.<n>Here we demonstrate this approach by combining high-resolution scanning transmission electron microscopy (STEM) data with insights derived from large language models (LLMs)<n>By fine-tuning ChatGPT on domain-specific literature, we construct adjacency matrices for Directed Acyclic Graphs (DAGs) that map the causal relationships between structural, chemical, and polarization degrees of freedom in Sm-doped BiFeO3 (SmBFO)
arXiv Detail & Related papers (2025-03-18T02:14:49Z) - Extrapolative ML Models for Copolymers [1.901715290314837]
Machine learning models have been progressively used for predicting materials properties.
These models are inherently interpolative, and their efficacy for searching candidates outside a material's known range of property is unresolved.
Here, we determine the relationship between the extrapolation ability of an ML model, the size and range of its training dataset, and its learning approach.
arXiv Detail & Related papers (2024-09-15T11:02:01Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Predicting and Enhancing the Fairness of DNNs with the Curvature of Perceptual Manifolds [44.79535333220044]
Recent studies have shown that tail classes are not always hard to learn, and model bias has been observed on sample-balanced datasets.<n>In this work, we first establish a geometric perspective for analyzing model fairness and then systematically propose a series of geometric measurements.
arXiv Detail & Related papers (2023-03-22T04:49:23Z) - Prediction Sets for High-Dimensional Mixture of Experts Models [9.195729979000404]
We show how to construct valid prediction sets for an $ell_$-penalized mixture of experts model in the high-dimensional setting.
We make use of a debiasing procedure to account for the bias induced by the penalization and propose a novel strategy for combining intervals to form a prediction set.
arXiv Detail & Related papers (2022-10-30T00:27:19Z) - Amortized Inference for Causal Structure Learning [72.84105256353801]
Learning causal structure poses a search problem that typically involves evaluating structures using a score or independence test.
We train a variational inference model to predict the causal structure from observational/interventional data.
Our models exhibit robust generalization capabilities under substantial distribution shift.
arXiv Detail & Related papers (2022-05-25T17:37:08Z) - Learning Deep Implicit Fourier Neural Operators (IFNOs) with
Applications to Heterogeneous Material Modeling [3.9181541460605116]
We propose to use data-driven modeling to predict a material's response without using conventional models.
The material response is modeled by learning the implicit mappings between loading conditions and the resultant displacement and/or damage fields.
We demonstrate the performance of our proposed method for a number of examples, including hyperelastic, anisotropic and brittle materials.
arXiv Detail & Related papers (2022-03-15T19:08:13Z) - Goal-directed Generation of Discrete Structures with Conditional
Generative Models [85.51463588099556]
We introduce a novel approach to directly optimize a reinforcement learning objective, maximizing an expected reward.
We test our methodology on two tasks: generating molecules with user-defined properties and identifying short python expressions which evaluate to a given target value.
arXiv Detail & Related papers (2020-10-05T20:03:13Z) - Learning Mixtures of Low-Rank Models [89.39877968115833]
We study the problem of learning computational mixtures of low-rank models.
We develop an algorithm that is guaranteed to recover the unknown matrices with near-optimal sample.
In addition, the proposed algorithm is provably stable against random noise.
arXiv Detail & Related papers (2020-09-23T17:53:48Z) - Chemical Property Prediction Under Experimental Biases [26.407895054724452]
This study focuses on mitigating bias in the experimental datasets.
We adopted two techniques from causal inference combined with graph neural networks that can represent molecular structures.
The experimental results in four possible bias scenarios indicated that the inverse propensity scoring-based method and the counter-factual regression-based method made solid improvements.
arXiv Detail & Related papers (2020-09-18T08:40:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.