論文の概要: ARCS: Agentic Retrieval-Augmented Code Synthesis with Iterative Refinement
- arxiv url: http://arxiv.org/abs/2504.20434v1
- Date: Tue, 29 Apr 2025 05:15:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:54.758459
- Title: ARCS: Agentic Retrieval-Augmented Code Synthesis with Iterative Refinement
- Title(参考訳): ARCS:反復精製によるエージェント検索拡張コード合成
- Authors: Manish Bhattarai, Miguel Cordova, Javier Santos, Dan O'Malley,
- Abstract要約: ARCSはRetrieval-Augmented GenerationとChain-of-Thought推論を統合している。
エージェントベースのRAGメカニズムは、関連するコードスニペットを取得する。
リアルタイム実行フィードバックは、候補解の合成を促進する。
- 参考スコア(独自算出の注目度): 1.8749305679160366
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In supercomputing, efficient and optimized code generation is essential to leverage high-performance systems effectively. We propose Agentic Retrieval-Augmented Code Synthesis (ARCS), an advanced framework for accurate, robust, and efficient code generation, completion, and translation. ARCS integrates Retrieval-Augmented Generation (RAG) with Chain-of-Thought (CoT) reasoning to systematically break down and iteratively refine complex programming tasks. An agent-based RAG mechanism retrieves relevant code snippets, while real-time execution feedback drives the synthesis of candidate solutions. This process is formalized as a state-action search tree optimization, balancing code correctness with editing efficiency. Evaluations on the Geeks4Geeks and HumanEval benchmarks demonstrate that ARCS significantly outperforms traditional prompting methods in translation and generation quality. By enabling scalable and precise code synthesis, ARCS offers transformative potential for automating and optimizing code development in supercomputing applications, enhancing computational resource utilization.
- Abstract(参考訳): スーパーコンピュータでは、高性能システムを効果的に活用するために、効率的で最適化されたコード生成が不可欠である。
本稿では,高精度でロバストで効率的なコード生成,補完,翻訳のための高度なフレームワークであるARCS(Agentic Retrieval-Augmented Code Synthesis)を提案する。
ARCSはRetrieval-Augmented Generation (RAG)とChain-of-Thought (CoT)を統合し、複雑なプログラミングタスクを体系的に分解し、反復的に洗練する。
エージェントベースのRAGメカニズムは、関連するコードスニペットを検索し、リアルタイム実行フィードバックは、候補ソリューションの合成を駆動する。
このプロセスはステートアクション探索木最適化として形式化され、コードの正しさと編集効率のバランスをとる。
Geeks4GeeksとHumanEvalベンチマークの評価は、ARCSが翻訳と生成品質において従来のプロンプトメソッドを著しく上回っていることを示している。
スケーラブルで正確なコード合成を可能にすることで、ARCSはスーパーコンピュータアプリケーションにおけるコード開発を自動化し、最適化するトランスフォーメーションポテンシャルを提供し、計算資源の利用を向上する。
関連論文リスト
- SymRTLO: Enhancing RTL Code Optimization with LLMs and Neuron-Inspired Symbolic Reasoning [18.40402135952776]
本稿では,新しいニューロン-シンボリックRTL最適化フレームワークであるSymRTLOを提案する。
有限状態機械(FSM)論理の解析と最適化のための記号モジュールを提案する。
Synopsys Design Compiler と Yosys による RTL-Rewriter ベンチマークの実験では、SymRTLO は 43.9% と 62.5% と 51.1% に向上している。
論文 参考訳(メタデータ) (2025-04-14T16:15:55Z) - Review, Refine, Repeat: Understanding Iterative Decoding of AI Agents with Dynamic Evaluation and Selection [71.92083784393418]
Best-of-N (BON) サンプリングのような推論時間法は、パフォーマンスを改善するための単純で効果的な代替手段を提供する。
本稿では,反復的改良と動的候補評価,検証器による選択を併用した反復的エージェント復号(IAD)を提案する。
論文 参考訳(メタデータ) (2025-04-02T17:40:47Z) - Scaling Test-Time Inference with Policy-Optimized, Dynamic Retrieval-Augmented Generation via KV Caching and Decoding [0.0]
本稿では,動的検索戦略と強化微調整により,RAG(Retrieval-Augmented Generation)システムを強化する枠組みを提案する。
我々のフレームワークは2つの補完手法を統合している: Policy-d Retrieval Augmented Generation (PORAG)とAdaptive Token-Layer Attention Scoring (ATLAS)。
我々のフレームワークは幻覚を減らし、ドメイン固有の推論を強化し、従来のRAGシステムよりも優れた効率とスケーラビリティを実現する。
論文 参考訳(メタデータ) (2025-04-02T01:16:10Z) - DARS: Dynamic Action Re-Sampling to Enhance Coding Agent Performance by Adaptive Tree Traversal [55.13854171147104]
大規模言語モデル(LLM)は、自然言語処理、データ分析、ソフトウェア開発など、さまざまな領域に革命をもたらした。
符号化エージェントのための新しい推論時間計算スケーリングアプローチである動的アクション再サンプリング(DARS)を提案する。
我々は、SWE-Bench Liteベンチマークに対する我々のアプローチを評価し、このスケーリング戦略がClude 3.5 Sonnet V2で55%のパス@kスコアを達成したことを実証した。
論文 参考訳(メタデータ) (2025-03-18T14:02:59Z) - VeriMind: Agentic LLM for Automated Verilog Generation with a Novel Evaluation Metric [4.590930025882158]
We propose VeriMind, a agentic LLM framework for Verilog code generation。
本稿では,従来のpass@k測度とARC(Average Refinement Cycles)を組み合わせた新しい評価手法を提案する。
様々なハードウェア設計タスクの実験結果によると、我々のアプローチはpass@kメトリックで最大8.3%、pass@ARCメトリックで最大8.1%向上した。
論文 参考訳(メタデータ) (2025-03-15T23:43:06Z) - A Multi-AI Agent System for Autonomous Optimization of Agentic AI Solutions via Iterative Refinement and LLM-Driven Feedback Loops [3.729242965449096]
本稿では,産業間におけるエージェントAIソリューションを自律的に最適化するフレームワークを提案する。
このフレームワークは、仮説を自律的に生成し、テストすることで、人間の入力なしに最適な性能を達成する。
ケーススタディでは、アウトプットの品質、妥当性、動作性が大幅に改善された。
論文 参考訳(メタデータ) (2024-12-22T20:08:04Z) - COrAL: Order-Agnostic Language Modeling for Efficient Iterative Refinement [80.18490952057125]
反復改良は、複雑なタスクにおける大規模言語モデル(LLM)の能力を高める効果的なパラダイムとして登場した。
我々はこれらの課題を克服するために、コンテキストワイズ順序非依存言語モデリング(COrAL)を提案する。
当社のアプローチでは、管理可能なコンテキストウィンドウ内で複数のトークン依存関係をモデル化しています。
論文 参考訳(メタデータ) (2024-10-12T23:56:19Z) - CodeDPO: Aligning Code Models with Self Generated and Verified Source Code [52.70310361822519]
我々は、コード生成に好み学習を統合するフレームワークであるCodeDPOを提案し、コードの正確性と効率性という2つの重要なコード優先要因を改善した。
CodeDPOは、コードとテストケースを同時に生成、評価するセルフジェネレーション・アンド・バリデーションメカニズムを利用して、新しいデータセット構築方法を採用している。
論文 参考訳(メタデータ) (2024-10-08T01:36:15Z) - RTLRewriter: Methodologies for Large Models aided RTL Code Optimization [21.61206887869307]
本稿では,RTLコードの最適化に大規模なモデルを活用する革新的なフレームワークであるRTLRewriterを紹介する。
回路分割パイプラインを高速な合成と効率的な書き換えに利用する。
特別な検索エンジンは、有用な最適化ガイド、アルゴリズム、コードスニペットを特定するように設計されている。
論文 参考訳(メタデータ) (2024-09-04T09:59:37Z) - RL-GPT: Integrating Reinforcement Learning and Code-as-policy [82.1804241891039]
本稿では,低速エージェントと高速エージェントからなる2レベル階層型フレームワークRL-GPTを提案する。
遅いエージェントはコーディングに適したアクションを分析し、速いエージェントはコーディングタスクを実行する。
この分解は、各エージェントが特定のタスクに効果的に集中し、パイプライン内で非常に効率的なことを証明します。
論文 参考訳(メタデータ) (2024-02-29T16:07:22Z) - StepCoder: Improve Code Generation with Reinforcement Learning from
Compiler Feedback [58.20547418182074]
2つの主要コンポーネントからなるコード生成の新しいフレームワークであるStepCoderを紹介します。
CCCSは、長いシーケンスのコード生成タスクをCurriculum of Code Completion Subtaskに分割することで、探索課題に対処する。
FGOは、未実行のコードセグメントをマスクすることでのみモデルを最適化し、Fine-Grained Optimizationを提供する。
提案手法は,出力空間を探索し,対応するベンチマークにおいて最先端の手法より優れた性能を発揮する。
論文 参考訳(メタデータ) (2024-02-02T13:14:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。