論文の概要: Autoencoder Models for Point Cloud Environmental Synthesis from WiFi Channel State Information: A Preliminary Study
- arxiv url: http://arxiv.org/abs/2504.20541v1
- Date: Tue, 29 Apr 2025 08:36:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:54.814038
- Title: Autoencoder Models for Point Cloud Environmental Synthesis from WiFi Channel State Information: A Preliminary Study
- Title(参考訳): WiFiチャネル状態情報を用いたポイントクラウド環境合成のためのオートエンコーダモデル:予備的検討
- Authors: Daniele Pannone, Danilo Avola,
- Abstract要約: 本稿では,WiFiチャネル状態情報データから点雲を生成するためのディープラーニングフレームワークを提案する。
提案手法の有効性を実験的に検証し,無線センシングおよび環境マッピングへの応用の可能性を強調した。
- 参考スコア(独自算出の注目度): 5.63069647746203
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper introduces a deep learning framework for generating point clouds from WiFi Channel State Information data. We employ a two-stage autoencoder approach: a PointNet autoencoder with convolutional layers for point cloud generation, and a Convolutional Neural Network autoencoder to map CSI data to a matching latent space. By aligning these latent spaces, our method enables accurate environmental point cloud reconstruction from WiFi data. Experimental results validate the effectiveness of our approach, highlighting its potential for wireless sensing and environmental mapping applications.
- Abstract(参考訳): 本稿では,WiFiチャネル状態情報データから点雲を生成するためのディープラーニングフレームワークを提案する。
我々は、ポイントクラウド生成のための畳み込みレイヤを備えたポイントネットオートエンコーダと、CSIデータを一致した潜在空間にマッピングする畳み込みニューラルネットワークオートエンコーダという、2段階のオートエンコーダアプローチを採用している。
これらの遅延空間を整列させることで、WiFiデータから正確な環境点雲の再構成を可能にする。
提案手法の有効性を実験的に検証し,無線センシングおよび環境マッピングへの応用の可能性を強調した。
関連論文リスト
- P2P-Bridge: Diffusion Bridges for 3D Point Cloud Denoising [81.92854168911704]
私たちは、Diffusion Schr"odingerブリッジをポイントクラウドに適応させる新しいフレームワークを通じて、ポイントクラウドを飾るタスクに取り組みます。
オブジェクトデータセットの実験では、P2P-Bridgeは既存のメソッドよりも大幅に改善されている。
論文 参考訳(メタデータ) (2024-08-29T08:00:07Z) - PointRegGPT: Boosting 3D Point Cloud Registration using Generative Point-Cloud Pairs for Training [90.06520673092702]
生成点クラウドペアを用いた3Dポイントクラウドの登録をトレーニングのために促進するPointRegGPTを提案する。
我々の知る限り、これは屋内のクラウド登録のためのリアルなデータ生成を探求する最初の生成的アプローチである。
論文 参考訳(メタデータ) (2024-07-19T06:29:57Z) - Mitigating Prior Shape Bias in Point Clouds via Differentiable Center Learning [19.986150101882217]
微分可能中心サンプリングネットワーク(DCS-Net)と呼ばれる新しいソリューションを導入する。
グローバルな特徴再構成とローカルな特徴再構成の両方を非自明なプロキシタスクとして組み込むことで,情報漏洩問題に対処する。
実験により,本手法は既存の点雲モデルの表現能力を向上することを示した。
論文 参考訳(メタデータ) (2024-02-03T08:58:23Z) - Point Cloud Pre-training with Diffusion Models [62.12279263217138]
我々は、ポイントクラウド拡散事前学習(PointDif)と呼ばれる新しい事前学習手法を提案する。
PointDifは、分類、セグメンテーション、検出など、さまざまな下流タスクのために、さまざまな現実世界のデータセット間で大幅に改善されている。
論文 参考訳(メタデータ) (2023-11-25T08:10:05Z) - AutoSynth: Learning to Generate 3D Training Data for Object Point Cloud
Registration [69.21282992341007]
Auto Synthは、ポイントクラウド登録のための3Dトレーニングデータを自動的に生成する。
私たちはポイントクラウド登録ネットワークをもっと小さなサロゲートネットワークに置き換え、4056.43$のスピードアップを実現しました。
TUD-L,LINEMOD,Occluded-LINEMODに関する我々の研究結果は,検索データセットでトレーニングされたニューラルネットワークが,広く使用されているModelNet40データセットでトレーニングされたニューラルネットワークよりも一貫してパフォーマンスが向上していることを示す。
論文 参考訳(メタデータ) (2023-09-20T09:29:44Z) - SeRP: Self-Supervised Representation Learning Using Perturbed Point
Clouds [6.29475963948119]
SeRPはエンコーダ・デコーダアーキテクチャで構成されており、乱れや破損した点雲を入力として利用する。
トランスフォーマーとPointNetベースのオートエンコーダを使用しました。
論文 参考訳(メタデータ) (2022-09-13T15:22:36Z) - Unsupervised Point Cloud Representation Learning with Deep Neural
Networks: A Survey [104.71816962689296]
大規模クラウドラベリングの制約により,教師なしのポイントクラウド表現学習が注目されている。
本稿では、ディープニューラルネットワークを用いた教師なしポイントクラウド表現学習の総合的なレビューを提供する。
論文 参考訳(メタデータ) (2022-02-28T07:46:05Z) - Deep Point Cloud Reconstruction [74.694733918351]
3Dスキャンから得られる点雲は、しばしばスパース、ノイズ、不規則である。
これらの問題に対処するため、最近の研究は別々に行われ、不正確な点雲を密度化、復調し、完全な不正確な点雲を観測している。
本研究では,1) 初期密度化とデノナイズのための3次元スパース集積時間ガラスネットワーク,2) 離散ボクセルを3Dポイントに変換するトランスフォーマーによる改良,の2段階からなる深部点雲再構成ネットワークを提案する。
論文 参考訳(メタデータ) (2021-11-23T07:53:28Z) - TreeGCN-ED: Encoding Point Cloud using a Tree-Structured Graph Network [24.299931323012757]
この研究は、ポイントクラウドのための堅牢な埋め込みを生成するオートエンコーダベースのフレームワークを提案する。
3Dポイントクラウド補完やシングルイメージベースの3D再構成といったアプリケーションにおいて,提案フレームワークの適用性を示す。
論文 参考訳(メタデータ) (2021-10-07T03:52:56Z) - PnP-3D: A Plug-and-Play for 3D Point Clouds [38.05362492645094]
本稿では,既存ネットワークのポイントクラウドデータ解析における有効性を改善するために,プラグイン・アンド・プレイモジュール -3D を提案する。
アプローチを徹底的に評価するために,3つの標準的なクラウド分析タスクについて実験を行った。
本研究は,最先端の成果の達成に加えて,我々のアプローチのメリットを実証する包括的研究を提案する。
論文 参考訳(メタデータ) (2021-08-16T23:59:43Z) - Dense-Resolution Network for Point Cloud Classification and Segmentation [42.316932316581635]
DRNetは、異なる解像度でポイントクラウドからローカルポイント機能を学ぶように設計されている。
広く使われているポイントクラウドセグメンテーションと分類ベンチマークでネットワークを検証することに加えて、コンポーネントのパフォーマンスをテストし視覚化する。
論文 参考訳(メタデータ) (2020-05-14T06:13:53Z) - Airborne LiDAR Point Cloud Classification with Graph Attention
Convolution Neural Network [5.69168146446103]
本稿では,空飛ぶLiDARにより得られる非構造化3次元点雲の分類に直接適用可能なグラフ注意畳み込みニューラルネットワーク(GACNN)を提案する。
提案するグラフアテンション・コンボリューション・モジュールに基づいて,GACNNと呼ばれるエンド・ツー・エンドのエンコーダ・デコーダネットワークを設計し,ポイント・クラウドのマルチスケールな特徴を捉える。
ISPRS 3Dラベリングデータセットの実験では、提案モデルが平均F1スコア(71.5%)と全精度(83.2%)で新しい最先端性能を達成することが示された。
論文 参考訳(メタデータ) (2020-04-20T05:12:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。