論文の概要: Revisiting the MIMIC-IV Benchmark: Experiments Using Language Models for Electronic Health Records
- arxiv url: http://arxiv.org/abs/2504.20547v1
- Date: Tue, 29 Apr 2025 08:49:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:54.816267
- Title: Revisiting the MIMIC-IV Benchmark: Experiments Using Language Models for Electronic Health Records
- Title(参考訳): MIMIC-IVベンチマークの再検討:電子健康記録のための言語モデルを用いた実験
- Authors: Jesus Lovon, Thouria Ben-Haddi, Jules Di Scala, Jose G. Moreno, Lynda Tamine,
- Abstract要約: 本稿では、電子健康記録のためのMIMIC-IVベンチマークを公開して再検討する。
私たちは、MIMIC-IVデータをHugging Faceデータセットライブラリに統合し、このコレクションの共有と使用を容易にします。
- 参考スコア(独自算出の注目度): 2.1046377530356764
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The lack of standardized evaluation benchmarks in the medical domain for text inputs can be a barrier to widely adopting and leveraging the potential of natural language models for health-related downstream tasks. This paper revisited an openly available MIMIC-IV benchmark for electronic health records (EHRs) to address this issue. First, we integrate the MIMIC-IV data within the Hugging Face datasets library to allow an easy share and use of this collection. Second, we investigate the application of templates to convert EHR tabular data to text. Experiments using fine-tuned and zero-shot LLMs on the mortality of patients task show that fine-tuned text-based models are competitive against robust tabular classifiers. In contrast, zero-shot LLMs struggle to leverage EHR representations. This study underlines the potential of text-based approaches in the medical field and highlights areas for further improvement.
- Abstract(参考訳): テキスト入力のための医学領域における標準化された評価ベンチマークの欠如は、健康関連下流タスクに自然言語モデルの可能性を広く採用し活用する上での障壁となる。
本稿では、電子健康記録(EHR)のためのMIMIC-IVベンチマークを公開し、この問題に対処する。
まず、Hugging FaceデータセットライブラリにMIMIC-IVデータを統合して、このコレクションの共有と使用を容易にします。
次に、EHR表データをテキストに変換するテンプレートの適用について検討する。
患者タスクの死亡率に対する微調整およびゼロショットLPMを用いた実験は、微調整テキストベースモデルが頑健な表型分類器と競合していることを示している。
対照的に、ゼロショット LLM は EHR 表現を活用するのに苦労する。
本研究は、医学分野におけるテキストベースのアプローチの可能性を明らかにし、さらなる改善の分野を強調する。
関連論文リスト
- LlaMADRS: Prompting Large Language Models for Interview-Based Depression Assessment [75.44934940580112]
LlaMADRSは、オープンソースのLarge Language Models(LLM)を利用して、うつ病の重症度評価を自動化する新しいフレームワークである。
本研究は,クリニカルインタヴューの解釈・スコアリングにおけるモデル指導のために,慎重に設計された手がかりを用いたゼロショットプロンプト戦略を用いている。
実世界における236件のインタビューを対象とし,臨床評価と強い相関性を示した。
論文 参考訳(メタデータ) (2025-01-07T08:49:04Z) - When Raw Data Prevails: Are Large Language Model Embeddings Effective in Numerical Data Representation for Medical Machine Learning Applications? [8.89829757177796]
大規模言語モデルの最後の隠れ状態からベクター表現が医療診断および予後に有効であることを示す。
我々は,異常な生理的データを表すため,ゼロショット設定の命令調整LDMに着目し,それらのユーティリティを特徴抽出器として評価する。
医学MLタスクでは生データの特徴が依然として有効であることが示唆されているが、ゼロショットLSM埋め込みは競争力のある結果を示している。
論文 参考訳(メタデータ) (2024-08-15T03:56:40Z) - LLMs-in-the-loop Part-1: Expert Small AI Models for Bio-Medical Text Translation [0.0]
本研究では,医療用テキストに最適化された教師ありニューラルマシン翻訳モデルを開発するために,新しい"LLMs-in-the-loop"アプローチを提案する。
6つの言語での独自の平行コーパスは、科学論文、人工的に生成された臨床文書、医療文書から編纂された。
MarianMTベースのモデルは、Google Translate、DeepL、GPT-4-Turboより優れている。
論文 参考訳(メタデータ) (2024-07-16T19:32:23Z) - Comparative Analysis of Open-Source Language Models in Summarizing Medical Text Data [5.443548415516227]
大規模言語モデル(LLM)は,非構造化テキストデータに対する問合せおよび要約処理において,優れた性能を示した。
医用要約タスクにおけるオープンソースのLCMの性能分析のための評価手法を提案する。
論文 参考訳(メタデータ) (2024-05-25T16:16:22Z) - Prompting Large Language Models for Zero-Shot Clinical Prediction with
Structured Longitudinal Electronic Health Record Data [7.815738943706123]
大規模言語モデル(LLM)は、伝統的に自然言語処理に向いている。
本研究では, GPT-4 などの LLM の EHR データへの適応性について検討する。
EHRデータの長手性、スパース性、知識を注入した性質に対応するため、本研究は特定の特徴を考慮に入れている。
論文 参考訳(メタデータ) (2024-01-25T20:14:50Z) - Interpretable Medical Diagnostics with Structured Data Extraction by
Large Language Models [59.89454513692417]
タブラルデータはしばしばテキストに隠され、特に医学的診断報告に使用される。
本稿では,TEMED-LLM と呼ばれるテキスト医療報告から構造化表状データを抽出する手法を提案する。
本手法は,医学診断における最先端のテキスト分類モデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-06-08T09:12:28Z) - Automated Medical Coding on MIMIC-III and MIMIC-IV: A Critical Review
and Replicability Study [60.56194508762205]
我々は、最先端の医療自動化機械学習モデルを再現し、比較し、分析する。
その結果, 弱い構成, サンプル化の不十分さ, 評価の不十分さなどにより, いくつかのモデルの性能が低下していることが判明した。
再生モデルを用いたMIMIC-IVデータセットの総合評価を行った。
論文 参考訳(メタデータ) (2023-04-21T11:54:44Z) - An Iterative Optimizing Framework for Radiology Report Summarization with ChatGPT [80.33783969507458]
放射線医学報告の「印象」セクションは、放射線医と他の医師とのコミュニケーションにとって重要な基盤である。
近年の研究では、大規模医療用テキストデータを用いた印象自動生成の有望な成果が得られている。
これらのモデルは、しばしば大量の医療用テキストデータを必要とし、一般化性能が劣る。
論文 参考訳(メタデータ) (2023-04-17T17:13:42Z) - Vision-Language Modelling For Radiological Imaging and Reports In The
Low Data Regime [70.04389979779195]
本稿では,視覚および言語入力を共通空間に埋め込んだ医用視覚言語モデル(VLM)について検討する。
本稿では,新しい画像領域やテキスト領域への汎用事前学習モデルの適用など,低データ性能向上のためのいくつかの候補手法について検討する。
テキスト・ツー・イメージ検索をベンチマークとして,2つの胸部X線および放射線学的報告を用いた可変サイズのトレーニングデータセットを用いて,これらの手法の性能評価を行った。
論文 参考訳(メタデータ) (2023-03-30T18:20:00Z) - G-Eval: NLG Evaluation using GPT-4 with Better Human Alignment [64.01972723692587]
本稿では,大規模言語モデルにチェーン・オブ・シント(CoT)を組み込んだフレームワークであるG-Evalと,NLG出力の品質評価のためのフォームフィリングパラダイムを提案する。
GPT-4 をバックボーンモデルとした G-Eval は,要約タスクにおいて,0.514 と人間とのスピアマン相関を達成し,従来手法の差を大きく上回ることを示す。
論文 参考訳(メタデータ) (2023-03-29T12:46:54Z) - Self-supervised Answer Retrieval on Clinical Notes [68.87777592015402]
本稿では,ドメイン固有パスマッチングのためのトランスフォーマー言語モデルをトレーニングするためのルールベースのセルフスーパービジョンであるCAPRを紹介する。
目的をトランスフォーマーベースの4つのアーキテクチャ、コンテキスト文書ベクトル、ビ-、ポリエンコーダ、クロスエンコーダに適用する。
本稿では,ドメイン固有パスの検索において,CAPRが強いベースラインを上回り,ルールベースおよび人間ラベル付きパスを効果的に一般化することを示す。
論文 参考訳(メタデータ) (2021-08-02T10:42:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。