論文の概要: Integrating Human Feedback into a Reinforcement Learning-Based Framework for Adaptive User Interfaces
- arxiv url: http://arxiv.org/abs/2504.20782v1
- Date: Tue, 29 Apr 2025 14:00:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:54.919271
- Title: Integrating Human Feedback into a Reinforcement Learning-Based Framework for Adaptive User Interfaces
- Title(参考訳): 適応型ユーザインタフェースのための強化学習ベースフレームワークへのヒューマンフィードバックの統合
- Authors: Daniel Gaspar-Figueiredo, Marta Fernández-Diego, Silvia Abrahão, Emilio Insfran,
- Abstract要約: 強化学習(Reinforcement Learning, RL)は、複雑でシーケンシャルな適応課題に対処するための有望なアプローチとして登場した。
RLベースの適応ユーザインタフェース適応フレームワークを,個人化されたフィードバックをリーンプロセスに直接組み込むことで拡張する。
当社のアプローチでは、各ユーザに対して独自のRLエージェントをトレーニングし、個人が自身のRLエージェントのポリシーを積極的に形成できるようにする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Adaptive User Interfaces (AUI) play a crucial role in modern software applications by dynamically adjusting interface elements to accommodate users' diverse and evolving needs. However, existing adaptation strategies often lack real-time responsiveness. Reinforcement Learning (RL) has emerged as a promising approach for addressing complex, sequential adaptation challenges, enabling adaptive systems to learn optimal policies based on previous adaptation experiences. Although RL has been applied to AUIs,integrating RL agents effectively within user interactions remains a challenge. In this paper, we enhance a RL-based Adaptive User Interface adaption framework by incorporating personalized human feedback directly into the leaning process. Unlike prior approaches that rely on a single pre-trained RL model, our approach trains a unique RL agent for each user, allowing individuals to actively shape their personal RL agent's policy, potentially leading to more personalized and responsive UI adaptations. To evaluate this approach, we conducted an empirical study to assess the impact of integrating human feedback into the RL-based Adaptive User Interface adaption framework and its effect on User Experience (UX). The study involved 33 participants interacting with AUIs incorporating human feedback and non-adaptive user interfaces in two domains: an e-learning platform and a trip-planning application. The results suggest that incorporating human feedback into RL-driven adaptations significantly enhances UX, offering promising directions for advancing adaptive capabilities and user-centered design in AUIs.
- Abstract(参考訳): Adaptive User Interfaces (AUI)は、ユーザのニーズの多様性と進化に合わせて動的にインターフェース要素を調整することで、現代のソフトウェアアプリケーションにおいて重要な役割を担います。
しかし、既存の適応戦略はリアルタイムの応答性に欠けることが多い。
強化学習(Reinforcement Learning, RL)は、複雑でシーケンシャルな適応課題に対処し、適応システムが以前の適応経験に基づいて最適なポリシーを学習できるようにするための有望なアプローチとして登場した。
RLはAUIに適用されているが、ユーザインタラクションにRLエージェントを効果的に統合することは依然として困難である。
本稿では,RLをベースとした適応ユーザインタフェース適応フレームワークを,個人化されたフィードバックを傾きプロセスに直接組み込むことにより拡張する。
事前訓練された1つのRLモデルに依存する従来のアプローチとは異なり、我々のアプローチでは、各ユーザに対して独自のRLエージェントをトレーニングし、個人が自身のRLエージェントのポリシーを積極的に形作り、よりパーソナライズされ、応答性のあるUI適応をもたらす可能性がある。
このアプローチを評価するために,RLをベースとしたAdaptive User Interface Adaptive Adaption Frameworkと,そのユーザエクスペリエンス(UX)への影響を評価するための実証的研究を行った。
この研究は、33人の参加者がAUIと対話し、人間のフィードバックと非適応的ユーザインタフェースを2つのドメイン(eラーニングプラットフォームとトリッププランニングアプリケーション)に組み込んだ。
その結果、RLによる適応に人間のフィードバックを取り入れることでUXが大幅に向上し、AUIにおける適応能力の向上とユーザ中心設計のための有望な方向性が提供されることが示唆された。
関連論文リスト
- Search-Based Interaction For Conversation Recommendation via Generative Reward Model Based Simulated User [117.82681846559909]
会話レコメンデーションシステム(CRS)は、マルチターンインタラクションを使用してユーザの好みを捉え、パーソナライズされたレコメンデーションを提供する。
本稿では,CRSと自動インタラクションを行うための生成報酬モデルに基づくシミュレーションユーザGRSUを提案する。
論文 参考訳(メタデータ) (2025-04-29T06:37:30Z) - Large Language Model driven Policy Exploration for Recommender Systems [50.70228564385797]
静的ユーザデータに基づいてトレーニングされたオフラインRLポリシは、動的オンライン環境にデプロイされた場合、分散シフトに対して脆弱である。
オンラインRLベースのRSも、トレーニングされていないポリシーや不安定なポリシーにユーザをさらけ出すリスクがあるため、運用デプロイメントの課題に直面している。
大規模言語モデル(LLM)は、ユーザー目標と事前学習ポリシーをオフラインで模倣する有望なソリューションを提供する。
LLMから抽出したユーザの嗜好を利用した対話型学習ポリシー(iALP)を提案する。
論文 参考訳(メタデータ) (2025-01-23T16:37:44Z) - Dynamic User Interface Generation for Enhanced Human-Computer Interaction Using Variational Autoencoders [4.1676654279172265]
本研究では,変分オートエンコーダ(VAE)モデルに基づく,インテリジェントなユーザインタラクションインタフェース生成と最適化のための新しいアプローチを提案する。
VAEベースのアプローチは、オートエンコーダ(AE)、生成敵ネットワーク(GAN)、条件付きGAN(cGAN)、ディープ信頼ネットワーク(DBN)、VAE-GAN(VAE-GAN)などの他の手法と比較して、インタフェース生成の品質と精度を著しく向上させる。
論文 参考訳(メタデータ) (2024-12-19T04:37:47Z) - Constraining Participation: Affordances of Feedback Features in Interfaces to Large Language Models [49.74265453289855]
大規模言語モデル(LLM)は、コンピュータ、Webブラウザ、ブラウザベースのインターフェースによるインターネット接続を持つ人なら誰でも利用できるようになった。
本稿では,ChatGPTインタフェースにおける対話型フィードバック機能の可能性について検討し,ユーザ入力の形状やイテレーションへの参加について分析する。
論文 参考訳(メタデータ) (2024-08-27T13:50:37Z) - Reinforcement Learning-Based Framework for the Intelligent Adaptation of User Interfaces [0.0]
ユーザのニーズや好みを満たすために、ソフトウェアシステムのユーザインターフェース(UI)を適用するのは、複雑な作業です。
機械学習(ML)技術の最近の進歩は、適応プロセスを支援する効果的な手段を提供するかもしれない。
本稿では,Reinforcement Learning (RL) をMLコンポーネントとして,インテリジェントユーザインタフェース適応のための参照フレームワークをインスタンス化する。
論文 参考訳(メタデータ) (2024-05-15T11:14:33Z) - Relative Preference Optimization: Enhancing LLM Alignment through Contrasting Responses across Identical and Diverse Prompts [95.09994361995389]
Relative Preference Optimization (RPO) は、同一のプロンプトと関連するプロンプトの両方から、より多く、あまり好まれない応答を識別するように設計されている。
RPOは、大きな言語モデルをユーザの好みに合わせて調整し、トレーニングプロセスにおける適応性を改善する優れた能力を示している。
論文 参考訳(メタデータ) (2024-02-12T22:47:57Z) - Learning from Interaction: User Interface Adaptation using Reinforcement
Learning [0.0]
この論文では、生理的データを用いたRLベースのUI適応フレームワークを提案する。
このフレームワークは、ユーザインタラクションから学び、ユーザエクスペリエンス(UX)を改善するための情報適応を実現することを目的としている。
論文 参考訳(メタデータ) (2023-12-12T12:29:18Z) - AgentCF: Collaborative Learning with Autonomous Language Agents for
Recommender Systems [112.76941157194544]
本稿では,エージェントベースの協調フィルタリングにより,レコメンデータシステムにおけるユーザとイテムのインタラクションをシミュレートするエージェントCFを提案する。
我々は、ユーザだけでなく、アイテムをエージェントとして、創造的に考慮し、両方のエージェントを同時に最適化する協調学習アプローチを開発します。
全体として、最適化されたエージェントは、ユーザ・イテム、ユーザ・ユーザ・ユーザ、アイテム・イテム、集合的インタラクションなど、フレームワーク内での多様なインタラクションの振る舞いを示す。
論文 参考訳(メタデータ) (2023-10-13T16:37:14Z) - A Comparative Study on Reward Models for UI Adaptation with
Reinforcement Learning [0.6899744489931015]
強化学習は、使用状況ごとにインターフェイスをパーソナライズするために使用することができる。
それぞれのアダプティブの報酬を決定することは、UIアダプティブに対するRLの課題である。
最近の研究では、この課題に対処するための報酬モデルの使用について検討されているが、このタイプのモデルに関する実証的な証拠はない。
論文 参考訳(メタデータ) (2023-08-26T18:31:16Z) - Adapting User Interfaces with Model-based Reinforcement Learning [47.469980921522115]
インターフェースへの適応には、変更がユーザに与えるポジティブな効果とネガティブな効果の両方を考慮する必要があります。
保守的な適応政策をもたらす適応的ユーザインターフェースの新たなアプローチを提案する。
論文 参考訳(メタデータ) (2021-03-11T17:24:34Z) - Optimizing Interactive Systems via Data-Driven Objectives [70.3578528542663]
本稿では,観察されたユーザインタラクションから直接目的を推測する手法を提案する。
これらの推論は、事前の知識によらず、様々な種類のユーザー行動にまたがって行われる。
本稿では,これらの推定対象を最適化するために利用する新しいアルゴリズムであるInteractive System(ISO)を紹介する。
論文 参考訳(メタデータ) (2020-06-19T20:49:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。