論文の概要: Dynamic User Interface Generation for Enhanced Human-Computer Interaction Using Variational Autoencoders
- arxiv url: http://arxiv.org/abs/2412.14521v1
- Date: Thu, 19 Dec 2024 04:37:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-20 13:29:48.241143
- Title: Dynamic User Interface Generation for Enhanced Human-Computer Interaction Using Variational Autoencoders
- Title(参考訳): 変分オートエンコーダを用いた人-コンピュータインタラクションの動的ユーザインタフェース生成
- Authors: Runsheng Zhang, Shixiao Wang, Tianfang Xie, Shiyu Duan, Mengmeng Chen,
- Abstract要約: 本研究では,変分オートエンコーダ(VAE)モデルに基づく,インテリジェントなユーザインタラクションインタフェース生成と最適化のための新しいアプローチを提案する。
VAEベースのアプローチは、オートエンコーダ(AE)、生成敵ネットワーク(GAN)、条件付きGAN(cGAN)、ディープ信頼ネットワーク(DBN)、VAE-GAN(VAE-GAN)などの他の手法と比較して、インタフェース生成の品質と精度を著しく向上させる。
- 参考スコア(独自算出の注目度): 4.1676654279172265
- License:
- Abstract: This study presents a novel approach for intelligent user interaction interface generation and optimization, grounded in the variational autoencoder (VAE) model. With the rapid advancement of intelligent technologies, traditional interface design methods struggle to meet the evolving demands for diversity and personalization, often lacking flexibility in real-time adjustments to enhance the user experience. Human-Computer Interaction (HCI) plays a critical role in addressing these challenges by focusing on creating interfaces that are functional, intuitive, and responsive to user needs. This research leverages the RICO dataset to train the VAE model, enabling the simulation and creation of user interfaces that align with user aesthetics and interaction habits. By integrating real-time user behavior data, the system dynamically refines and optimizes the interface, improving usability and underscoring the importance of HCI in achieving a seamless user experience. Experimental findings indicate that the VAE-based approach significantly enhances the quality and precision of interface generation compared to other methods, including autoencoders (AE), generative adversarial networks (GAN), conditional GANs (cGAN), deep belief networks (DBN), and VAE-GAN. This work contributes valuable insights into HCI, providing robust technical solutions for automated interface generation and enhanced user experience optimization.
- Abstract(参考訳): 本研究では,変分オートエンコーダ(VAE)モデルに基づく,インテリジェントなユーザインタラクションインタフェース生成と最適化のための新しいアプローチを提案する。
インテリジェントな技術の急速な進歩により、従来のインターフェース設計手法は多様性とパーソナライゼーションの進化する要求を満たすのに苦慮し、ユーザエクスペリエンスを向上させるためにリアルタイム調整の柔軟性に欠けることが多い。
HCI(Human-Computer Interaction)は、機能的で直感的で、ユーザニーズに応答するインターフェースを作ることに集中することで、これらの課題に対処する上で重要な役割を担います。
本研究では、RICOデータセットを活用してVAEモデルをトレーニングし、ユーザ美学やインタラクションの習慣に合わせてユーザインターフェースのシミュレーションと生成を可能にする。
リアルタイムユーザ行動データを統合することで、インターフェースを動的に洗練、最適化し、ユーザビリティを改善し、シームレスなユーザエクスペリエンスを実現する上でのHCIの重要性を強調する。
実験の結果,VAEに基づくアプローチは,オートエンコーダ(AE),ジェネレーティブ・逆境ネットワーク(GAN),条件付きGAN(cGAN),ディープ・信仰ネットワーク(DBN),VAE-GAN(VAE-GAN)などの他の手法と比較して,インターフェース生成の品質と精度を著しく向上させることがわかった。
この作業は、HCIに対する貴重な洞察をもたらし、インターフェイスの自動生成とユーザエクスペリエンスの最適化のための堅牢な技術的ソリューションを提供する。
関連論文リスト
- GUI Agents: A Survey [129.94551809688377]
グラフィカルユーザインタフェース(GUI)エージェントは、人間とコンピュータのインタラクションを自動化するためのトランスフォーメーションアプローチとして登場した。
GUIエージェントの関心の高まりと基本的な重要性により、ベンチマーク、評価指標、アーキテクチャ、トレーニングメソッドを分類する総合的な調査を提供する。
論文 参考訳(メタデータ) (2024-12-18T04:48:28Z) - Generative AI in Multimodal User Interfaces: Trends, Challenges, and Cross-Platform Adaptability [0.0]
ジェネレーティブAIは、ユーザーインターフェイスを再構築する上で重要なドライバとして登場します。
本稿では,現代ユーザインタフェースにおける生成AIの統合について考察する。
マルチモーダルインタラクション、クロスプラットフォーム適応性、動的パーソナライゼーションに焦点を当てている。
論文 参考訳(メタデータ) (2024-11-15T14:49:58Z) - Survey of User Interface Design and Interaction Techniques in Generative AI Applications [79.55963742878684]
我々は,デザイナやディベロッパの参照として使用できる,さまざまなユーザインタラクションパターンのコンペレーションを作ることを目指している。
また、生成AIアプリケーションの設計についてもっと学ぼうとする人たちの参入障壁を低くしようと努力しています。
論文 参考訳(メタデータ) (2024-10-28T23:10:06Z) - Retrieval Augmentation via User Interest Clustering [57.63883506013693]
インダストリアルレコメンデータシステムは、ユーザ・イテム・エンゲージメントのパターンに敏感である。
本稿では,ユーザの関心を効率的に構築し,計算コストの低減を図る新しい手法を提案する。
当社のアプローチはMetaの複数の製品に展開されており、ショートフォームビデオ関連の推奨を助長しています。
論文 参考訳(メタデータ) (2024-08-07T16:35:10Z) - Reinforcement Learning-Based Framework for the Intelligent Adaptation of User Interfaces [0.0]
ユーザのニーズや好みを満たすために、ソフトウェアシステムのユーザインターフェース(UI)を適用するのは、複雑な作業です。
機械学習(ML)技術の最近の進歩は、適応プロセスを支援する効果的な手段を提供するかもしれない。
本稿では,Reinforcement Learning (RL) をMLコンポーネントとして,インテリジェントユーザインタフェース適応のための参照フレームワークをインスタンス化する。
論文 参考訳(メタデータ) (2024-05-15T11:14:33Z) - A Comparative Study on Reward Models for UI Adaptation with
Reinforcement Learning [0.6899744489931015]
強化学習は、使用状況ごとにインターフェイスをパーソナライズするために使用することができる。
それぞれのアダプティブの報酬を決定することは、UIアダプティブに対するRLの課題である。
最近の研究では、この課題に対処するための報酬モデルの使用について検討されているが、このタイプのモデルに関する実証的な証拠はない。
論文 参考訳(メタデータ) (2023-08-26T18:31:16Z) - Large Language Models Empowered Autonomous Edge AI for Connected
Intelligence [51.269276328087855]
エッジ人工知能(Edge AI)は、コネクテッドインテリジェンスを実現するための有望なソリューションである。
この記事では、ユーザのさまざまな要件を満たすために自動的に組織化し、適応し、最適化する、自律的なエッジAIシステムのビジョンを示す。
論文 参考訳(メタデータ) (2023-07-06T05:16:55Z) - Computational Adaptation of XR Interfaces Through Interaction Simulation [4.6193503399184275]
本稿では,ユーザエクスペリエンスとパフォーマンスの向上を目的として,XRインタフェースを適応するための計算手法について論じる。
メニュー選択タスクに適用した新しいモデルでは,認知的コストと運動的コストの両方を考慮してユーザインタラクションをシミュレートする。
論文 参考訳(メタデータ) (2022-04-19T23:37:07Z) - VIRT: Improving Representation-based Models for Text Matching through
Virtual Interaction [50.986371459817256]
本稿では,VIRT と呼ばれる新しいtextitVirtual InteRacTion 機構を提案する。
VIRTは、表現ベースのエンコーダに、対話ベースのモデルのように振舞いを模倣する仮想インタラクションを実行するよう要求する。
論文 参考訳(メタデータ) (2021-12-08T09:49:28Z) - Optimizing Interactive Systems via Data-Driven Objectives [70.3578528542663]
本稿では,観察されたユーザインタラクションから直接目的を推測する手法を提案する。
これらの推論は、事前の知識によらず、様々な種類のユーザー行動にまたがって行われる。
本稿では,これらの推定対象を最適化するために利用する新しいアルゴリズムであるInteractive System(ISO)を紹介する。
論文 参考訳(メタデータ) (2020-06-19T20:49:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。