Research on CNN-BiLSTM Network Traffic Anomaly Detection Model Based on MindSpore
- URL: http://arxiv.org/abs/2504.21008v1
- Date: Mon, 14 Apr 2025 15:10:18 GMT
- Title: Research on CNN-BiLSTM Network Traffic Anomaly Detection Model Based on MindSpore
- Authors: Qiuyan Xiang, Shuang Wu, Dongze Wu, Yuxin Liu, Zhenkai Qin,
- Abstract summary: This study proposes a novel network traffic anomaly detection model that integrates a Convolutional Neural Network (CNN) with a Bidirectional Long Short-Term Memory (BiLSTM) network.<n>The proposed model achieves 99% across accuracy, precision, recall, and F1-score, indicating its strong performance and robustness in network intrusion detection tasks.
- Score: 7.564738687560689
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the widespread adoption of the Internet of Things (IoT) and Industrial IoT (IIoT) technologies, network architectures have become increasingly complex, and the volume of traffic has grown substantially. This evolution poses significant challenges to traditional security mechanisms, particularly in detecting high-frequency, diverse, and highly covert network attacks. To address these challenges, this study proposes a novel network traffic anomaly detection model that integrates a Convolutional Neural Network (CNN) with a Bidirectional Long Short-Term Memory (BiLSTM) network, implemented on the MindSpore framework. Comprehensive experiments were conducted using the NF-BoT-IoT dataset. The results demonstrate that the proposed model achieves 99% across accuracy, precision, recall, and F1-score, indicating its strong performance and robustness in network intrusion detection tasks.
Related papers
- Intrusion Detection System Using Deep Learning for Network Security [0.6554326244334868]
This paper proposes an experimental evaluation of IDS models based on deep learning techniques.<n>We focus on the classification of network traffic into malicious and benign categories.<n>Among the tested models, the best achieved an accuracy of 96 percent.
arXiv Detail & Related papers (2025-05-09T06:04:58Z) - MindFlow: A Network Traffic Anomaly Detection Model Based on MindSpore [7.564738687560689]
This study proposes MindFlow, a multi-dimensional dynamic traffic prediction and anomaly detection system.<n>The proposed model achieves 99% in key metrics such as accuracy, precision, recall and F1 score.
arXiv Detail & Related papers (2025-04-24T15:48:02Z) - NetFlowGen: Leveraging Generative Pre-training for Network Traffic Dynamics [72.95483148058378]
We propose to pre-train a general-purpose machine learning model to capture traffic dynamics with only traffic data from NetFlow records.<n>We address challenges such as unifying network feature representations, learning from large unlabeled traffic data volume, and testing on real downstream tasks in DDoS attack detection.
arXiv Detail & Related papers (2024-12-30T00:47:49Z) - A Temporal Convolutional Network-based Approach for Network Intrusion Detection [0.0]
This study proposes a Temporal Convolutional Network(TCN) model featuring a residual block architecture with dilated convolutions to capture dependencies in network traffic data.<n>The proposed model achieved an accuracy of 96.72% and a loss of 0.0688, outperforming 1D CNN, CNN-LSTM, CNN-GRU, CNN-BiLSTM, and CNN-GRU-LSTM models.
arXiv Detail & Related papers (2024-12-23T10:19:29Z) - A Cutting-Edge Deep Learning Method For Enhancing IoT Security [0.0]
This paper proposes an innovative design of the Internet of Things (IoT) Environment Intrusion Detection System (or IDS) using Deep Learning-integrated Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks.
Our model, based on the CICIDS 2017 dataset, achieved an accuracy of 99.52% in classifying network traffic as either benign or malicious.
arXiv Detail & Related papers (2024-06-18T08:42:51Z) - RACH Traffic Prediction in Massive Machine Type Communications [5.416701003120508]
This paper presents a machine learning-based framework tailored for forecasting bursty traffic in ALOHA networks.<n>We develop a new low-complexity online prediction algorithm that updates the states of the LSTM network by leveraging frequently collected data from the mMTC network.<n>We evaluate the performance of the proposed framework in a network with a single base station and thousands of devices organized into groups with distinct traffic-generating characteristics.
arXiv Detail & Related papers (2024-05-08T17:28:07Z) - ADASR: An Adversarial Auto-Augmentation Framework for Hyperspectral and
Multispectral Data Fusion [54.668445421149364]
Deep learning-based hyperspectral image (HSI) super-resolution aims to generate high spatial resolution HSI (HR-HSI) by fusing hyperspectral image (HSI) and multispectral image (MSI) with deep neural networks (DNNs)
In this letter, we propose a novel adversarial automatic data augmentation framework ADASR that automatically optimize and augments HSI-MSI sample pairs to enrich data diversity for HSI-MSI fusion.
arXiv Detail & Related papers (2023-10-11T07:30:37Z) - Contextualizing MLP-Mixers Spatiotemporally for Urban Data Forecast at Scale [54.15522908057831]
We propose an adapted version of the computationally-Mixer for STTD forecast at scale.
Our results surprisingly show that this simple-yeteffective solution can rival SOTA baselines when tested on several traffic benchmarks.
Our findings contribute to the exploration of simple-yet-effective models for real-world STTD forecasting.
arXiv Detail & Related papers (2023-07-04T05:19:19Z) - Solving Large-scale Spatial Problems with Convolutional Neural Networks [88.31876586547848]
We employ transfer learning to improve training efficiency for large-scale spatial problems.
We propose that a convolutional neural network (CNN) can be trained on small windows of signals, but evaluated on arbitrarily large signals with little to no performance degradation.
arXiv Detail & Related papers (2023-06-14T01:24:42Z) - FERN: Leveraging Graph Attention Networks for Failure Evaluation and
Robust Network Design [46.302926845889694]
We develop a learning-based framework, FERN, for scalable Failure Evaluation and Robust Network design.
FERN represents rich problem inputs as a graph and captures both local and global views by attentively performing feature extraction from the graph.
It can speed up multiple robust network design problems by more than 80x, 200x, 10x, respectively with negligible performance gap.
arXiv Detail & Related papers (2023-05-30T15:56:25Z) - Generalization and Estimation Error Bounds for Model-based Neural
Networks [78.88759757988761]
We show that the generalization abilities of model-based networks for sparse recovery outperform those of regular ReLU networks.
We derive practical design rules that allow to construct model-based networks with guaranteed high generalization.
arXiv Detail & Related papers (2023-04-19T16:39:44Z) - Leveraging a Probabilistic PCA Model to Understand the Multivariate
Statistical Network Monitoring Framework for Network Security Anomaly
Detection [64.1680666036655]
We revisit anomaly detection techniques based on PCA from a probabilistic generative model point of view.
We have evaluated the mathematical model using two different datasets.
arXiv Detail & Related papers (2023-02-02T13:41:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.