論文の概要: A 3D pocket-aware and affinity-guided diffusion model for lead optimization
- arxiv url: http://arxiv.org/abs/2504.21065v1
- Date: Tue, 29 Apr 2025 11:52:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-09 23:54:05.452405
- Title: A 3D pocket-aware and affinity-guided diffusion model for lead optimization
- Title(参考訳): リード最適化のための3次元ポケット認識と親和性誘導拡散モデル
- Authors: Anjie Qiao, Junjie Xie, Weifeng Huang, Hao Zhang, Jiahua Rao, Shuangjia Zheng, Yuedong Yang, Zhen Wang, Guo-Bo Li, Jinping Lei,
- Abstract要約: Diffleopという3次元ポケット認識および親和性誘導拡散モデルを提案し,結合親和性を高めた分子を最適化する。
このモデルは、タンパク質-リガンド結合親和性の知識を明示的に取り入れ、高い親和性を持つ分子生成のための脱ノイズサンプリングを導く。
- 参考スコア(独自算出の注目度): 15.437706611144208
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Molecular optimization, aimed at improving binding affinity or other molecular properties, is a crucial task in drug discovery that often relies on the expertise of medicinal chemists. Recently, deep learning-based 3D generative models showed promise in enhancing the efficiency of molecular optimization. However, these models often struggle to adequately consider binding affinities with protein targets during lead optimization. Herein, we propose a 3D pocket-aware and affinity-guided diffusion model, named Diffleop, to optimize molecules with enhanced binding affinity. The model explicitly incorporates the knowledge of protein-ligand binding affinity to guide the denoising sampling for molecule generation with high affinity. The comprehensive evaluations indicated that Diffleop outperforms baseline models across multiple metrics, especially in terms of binding affinity.
- Abstract(参考訳): 分子最適化は、結合親和性やその他の分子特性を改善することを目的としており、医薬品発見において重要な課題であり、しばしば薬理学者の専門知識に依存している。
近年,ディープラーニングに基づく3次元生成モデルにより,分子最適化の効率化が期待できる。
しかしながら、これらのモデルは、リード最適化中にタンパク質標的との結合親和性を適切に検討するのに苦労することが多い。
そこで本研究では,結合親和性を高めた分子を最適化するために,Diffleopという3次元ポケット認識および親和性誘導拡散モデルを提案する。
このモデルは、タンパク質-リガンド結合親和性の知識を明示的に取り入れ、高い親和性を持つ分子生成のための脱ノイズサンプリングを導く。
総合的な評価は、Diffleopが複数の指標、特に結合親和性においてベースラインモデルより優れていることを示している。
関連論文リスト
- Molecule Generation for Target Protein Binding with Hierarchical Consistency Diffusion Model [17.885767456439215]
Atom-Motif Consistency Diffusion Model (AMDiff)は、分子の原子レベルのビューとモチーフレベルのビューを統合する階層的な拡散アーキテクチャである。
既存のアプローチと比較して、AMDiffは様々なタンパク質ポケットに適合するように調整された分子の生成において、優れた妥当性と新規性を示す。
論文 参考訳(メタデータ) (2025-03-02T17:54:30Z) - Conditional Synthesis of 3D Molecules with Time Correction Sampler [58.0834973489875]
Time-Aware Conditional Synthesis (TACS) は拡散モデルにおける条件生成の新しい手法である。
適応的に制御されたプラグアンドプレイの"オンライン"ガイダンスを拡散モデルに統合し、サンプルを所望の特性に向けて駆動する。
論文 参考訳(メタデータ) (2024-11-01T12:59:25Z) - Decomposed Direct Preference Optimization for Structure-Based Drug Design [47.561983733291804]
本稿では,拡散モデルと医薬的ニーズを整合させる構造に基づく最適化手法であるDecompDPOを提案する。
DecompDPOは、様々なタンパク質ファミリーにまたがる分子生成のための微調整済み拡散モデルと、生成後に特定のタンパク質サブポケットを与える分子最適化の2つの主要な目的のために効果的に使用できる。
論文 参考訳(メタデータ) (2024-07-19T02:12:25Z) - Aligning Target-Aware Molecule Diffusion Models with Exact Energy Optimization [147.7899503829411]
AliDiffは、事前訓練されたターゲット拡散モデルと望ましい機能特性を整合させる新しいフレームワークである。
最先端の結合エネルギーを持つ分子を最大7.07 Avg. Vina Scoreで生成することができる。
論文 参考訳(メタデータ) (2024-07-01T06:10:29Z) - TAGMol: Target-Aware Gradient-guided Molecule Generation [19.977071499171903]
3次元生成モデルは、構造ベースドラッグデザイン(SBDD)において大きな可能性を秘めている。
問題を分子生成と特性予測に分離する。
後者は相乗的に拡散サンプリング過程を導出し、誘導拡散を促進し、所望の性質を持つ有意義な分子を創出する。
この誘導分子生成過程をTAGMolと呼ぶ。
論文 参考訳(メタデータ) (2024-06-03T14:43:54Z) - DecompOpt: Controllable and Decomposed Diffusion Models for Structure-based Molecular Optimization [49.85944390503957]
DecompOptは、制御可能・拡散モデルに基づく構造に基づく分子最適化手法である。
DecompOptは強いde novoベースラインよりも優れた特性を持つ分子を効率よく生成できることを示す。
論文 参考訳(メタデータ) (2024-03-07T02:53:40Z) - DecompDiff: Diffusion Models with Decomposed Priors for Structure-Based Drug Design [62.68420322996345]
既存の構造に基づく薬物設計法は、すべての配位子原子を等しく扱う。
腕と足場を分解した新しい拡散モデルDecompDiffを提案する。
提案手法は,高親和性分子の生成における最先端性能を実現する。
論文 参考訳(メタデータ) (2024-02-26T05:21:21Z) - SE(3)-Invariant Multiparameter Persistent Homology for Chiral-Sensitive
Molecular Property Prediction [1.534667887016089]
多パラメータ持続ホモロジー(MPPH)を用いた新しい分子指紋生成法を提案する。
この技術は、正確な分子特性予測が不可欠である薬物発見と材料科学において、かなりの重要性を持っている。
分子特性の予測における既存の最先端手法よりも優れた性能を示し,MoleculeNetベンチマークで広範囲な評価を行った。
論文 参考訳(メタデータ) (2023-12-12T09:33:54Z) - A biologically-inspired evaluation of molecular generative machine
learning [17.623886600638716]
分子生成モデル評価のためのバイオインスパイアされた新しいベンチマークを提案する。
本稿では, 創出出力評価のための相補的手法として, レクリエーション指標, 薬物-標的親和性予測, 分子ドッキングを提案する。
論文 参考訳(メタデータ) (2022-08-20T11:01:10Z) - Molecular Attributes Transfer from Non-Parallel Data [57.010952598634944]
分子最適化をスタイル伝達問題として定式化し、非並列データの2つのグループ間の内部差を自動的に学習できる新しい生成モデルを提案する。
毒性修飾と合成性向上という2つの分子最適化タスクの実験により,本モデルがいくつかの最先端手法を著しく上回ることを示した。
論文 参考訳(メタデータ) (2021-11-30T06:10:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。