論文の概要: Molecule Generation for Target Protein Binding with Hierarchical Consistency Diffusion Model
- arxiv url: http://arxiv.org/abs/2503.00975v1
- Date: Sun, 02 Mar 2025 17:54:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:16:50.634593
- Title: Molecule Generation for Target Protein Binding with Hierarchical Consistency Diffusion Model
- Title(参考訳): 階層的一貫性拡散モデルによるターゲットタンパク質結合の分子生成
- Authors: Guanlue Li, Chenran Jiang, Ziqi Gao, Yu Liu, Chenyang Liu, Jiean Chen, Yong Huang, Jia Li,
- Abstract要約: Atom-Motif Consistency Diffusion Model (AMDiff)は、分子の原子レベルのビューとモチーフレベルのビューを統合する階層的な拡散アーキテクチャである。
既存のアプローチと比較して、AMDiffは様々なタンパク質ポケットに適合するように調整された分子の生成において、優れた妥当性と新規性を示す。
- 参考スコア(独自算出の注目度): 17.885767456439215
- License:
- Abstract: Effective generation of molecular structures, or new chemical entities, that bind to target proteins is crucial for lead identification and optimization in drug discovery. Despite advancements in atom- and motif-wise deep learning models for 3D molecular generation, current methods often struggle with validity and reliability. To address these issues, we develop the Atom-Motif Consistency Diffusion Model (AMDiff), utilizing a joint-training paradigm for multi-view learning. This model features a hierarchical diffusion architecture that integrates both atom- and motif-level views of molecules, allowing for comprehensive exploration of complementary information. By leveraging classifier-free guidance and incorporating binding site features as conditional inputs, AMDiff ensures robust molecule generation across diverse targets. Compared to existing approaches, AMDiff exhibits superior validity and novelty in generating molecules tailored to fit various protein pockets. Case studies targeting protein kinases, including Anaplastic Lymphoma Kinase (ALK) and Cyclin-dependent kinase 4 (CDK4), demonstrate the model's capability in structure-based de novo drug design. Overall, AMDiff bridges the gap between atom-view and motif-view drug discovery and speeds up the process of target-aware molecular generation.
- Abstract(参考訳): 標的タンパク質に結合する分子構造、または新しい化学物質の効果的な生成は、薬物発見における鉛の同定と最適化に不可欠である。
3次元分子生成のための原子とモチーフの深層学習モデルの発展にもかかわらず、現在の手法は妥当性と信頼性に苦慮することが多い。
これらの課題に対処するため,多視点学習のための共同学習パラダイムを活用したAtom-Motif Consistency Diffusion Model (AMDiff)を開発した。
このモデルは、分子の原子レベルとモチーフレベルの両方のビューを統合する階層的な拡散アーキテクチャを特徴とし、相補的な情報の包括的探索を可能にする。
AMDiffは、分類器のないガイダンスを活用し、結合部位の特徴を条件入力として組み込むことで、多様なターゲットにまたがる堅牢な分子生成を保証している。
既存のアプローチと比較して、AMDiffは様々なタンパク質ポケットに適合するように調整された分子の生成において、優れた妥当性と新規性を示す。
Anaplastic Lymphoma Kinase (ALK) やCyclin-dependent kinase 4 (CDK4) などのプロテインキナーゼを標的とするケーススタディは、構造に基づくデノボ薬物設計におけるモデルの有効性を実証している。
全体として、AMDiffは原子ビューとモチーフビューの薬物発見のギャップを埋め、ターゲット認識分子生成のプロセスを高速化する。
関連論文リスト
- Cell Morphology-Guided Small Molecule Generation with GFlowNets [41.8027680592766]
本稿では,GFlowNetsの報酬として潜在類似性を定義するために,教師なしマルチモーダルジョイント埋め込みを提案する。
提案したモデルでは、与えられた画像ターゲットと類似した表現型効果を生じさせる新しい分子の生成を学習する。
提案手法は, ターゲットに高い形態的, 構造的類似性を有する分子を生成し, 類似した生物活性の可能性が高まることを示した。
論文 参考訳(メタデータ) (2024-08-09T17:40:35Z) - Aligning Target-Aware Molecule Diffusion Models with Exact Energy Optimization [147.7899503829411]
AliDiffは、事前訓練されたターゲット拡散モデルと望ましい機能特性を整合させる新しいフレームワークである。
最先端の結合エネルギーを持つ分子を最大7.07 Avg. Vina Scoreで生成することができる。
論文 参考訳(メタデータ) (2024-07-01T06:10:29Z) - UniIF: Unified Molecule Inverse Folding [67.60267592514381]
全分子の逆折り畳みのための統一モデルUniIFを提案する。
提案手法は,全タスクにおける最先端手法を超越した手法である。
論文 参考訳(メタデータ) (2024-05-29T10:26:16Z) - AUTODIFF: Autoregressive Diffusion Modeling for Structure-based Drug Design [16.946648071157618]
構造に基づく薬物設計のための拡散型フラグメントワイド自己回帰生成モデル(SBDD)を提案する。
我々はまず,分子の局所構造の整合性を保持する共形モチーフという新しい分子組立戦略を設計する。
次に、タンパク質-リガンド複合体とSE(3)等価な畳み込みネットワークとの相互作用をエンコードし、拡散モデルを用いて分子モチーフ・バイ・モチーフを生成する。
論文 参考訳(メタデータ) (2024-04-02T14:44:02Z) - DecompDiff: Diffusion Models with Decomposed Priors for Structure-Based Drug Design [62.68420322996345]
既存の構造に基づく薬物設計法は、すべての配位子原子を等しく扱う。
腕と足場を分解した新しい拡散モデルDecompDiffを提案する。
提案手法は,高親和性分子の生成における最先端性能を実現する。
論文 参考訳(メタデータ) (2024-02-26T05:21:21Z) - FREED++: Improving RL Agents for Fragment-Based Molecule Generation by
Thorough Reproduction [33.57089414199478]
強化学習(Reinforcement Learning, RL)はドッキングスコア(DS)を報奨として分子を生成するための有望なアプローチとして登場した。
我々はFREED(arXiv:2110.01219)と呼ばれる分子生成の最近のモデルを再現し、精査し、改善する
論文 参考訳(メタデータ) (2024-01-18T09:54:19Z) - Functional-Group-Based Diffusion for Pocket-Specific Molecule Generation and Elaboration [63.23362798102195]
ポケット特異的分子生成とエラボレーションのための機能群に基づく拡散モデルD3FGを提案する。
D3FGは分子を、剛体として定義される官能基と質量点としてのリンカーの2つのカテゴリに分解する。
実験では, より現実的な3次元構造, タンパク質標的に対する競合親和性, 薬物特性の良好な分子を生成できる。
論文 参考訳(メタデータ) (2023-05-30T06:41:20Z) - DiffBP: Generative Diffusion of 3D Molecules for Target Protein Binding [51.970607704953096]
従来の研究は通常、原子の要素タイプと3次元座標を1つずつ生成する自己回帰的な方法で原子を生成する。
現実世界の分子系では、分子全体の原子間の相互作用が大域的であり、原子間のエネルギー関数が結合する。
本研究では、標的タンパク質に基づく分子3次元構造の生成拡散モデルを構築し、非自己回帰的に全原子レベルで構築する。
論文 参考訳(メタデータ) (2022-11-21T07:02:15Z) - Equivariant 3D-Conditional Diffusion Models for Molecular Linker Design [82.23006955069229]
分子リンカ設計のためのE(3)等価な3次元拡散モデルDiffLinkerを提案する。
我々のモデルは、欠落した原子を中間に配置し、初期フラグメントを全て組み込んだ分子を設計する。
DiffLinkerは、より多種多様な合成可能な分子を生成する標準データセット上で、他の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-10-11T09:13:37Z) - Widely Used and Fast De Novo Drug Design by a Protein Sequence-Based
Reinforcement Learning Model [4.815696666006742]
構造に基づくde novo法は、薬物と標的の相互作用を深く生成するアーキテクチャに組み込むことによって、アクティブなデータ不足を克服することができる。
本稿では,医薬品発見のためのタンパク質配列に基づく拡張学習モデルについて紹介する。
概念実証として、RLモデルを用いて分子を4つのターゲットに設計した。
論文 参考訳(メタデータ) (2022-08-14T10:41:52Z) - Structure-aware generation of drug-like molecules [2.449909275410288]
深部生成法は、新しい分子をスクラッチから提案する(デノボ設計)。
本稿では, 分子間空間における3次元ポーズと協調して分子グラフを生成する新しい教師付きモデルを提案する。
ドッキングベンチマークを用いて,ドッキングモデルの評価を行い,ドッキング生成によって予測される結合親和性が8%向上し,薬物類似度が10%向上することが確認された。
論文 参考訳(メタデータ) (2021-11-07T15:19:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。