論文の概要: Detecting Manipulated Contents Using Knowledge-Grounded Inference
- arxiv url: http://arxiv.org/abs/2504.21165v1
- Date: Tue, 29 Apr 2025 20:33:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-09 23:27:11.629206
- Title: Detecting Manipulated Contents Using Knowledge-Grounded Inference
- Title(参考訳): 知識領域推論による操作内容の検出
- Authors: Mark Huasong Meng, Ruizhe Wang, Meng Xu, Chuan Yan, Guangdong Bai,
- Abstract要約: ゼロデイ操作されたコンテンツを検出するためのツールであるManicodを提案する。
Manicodはまず、メインストリーム検索エンジンからのインプットクレームに関するコンテキスト情報を提供している。
マニコドは「真実」あるいは「操作された」決定を下し、その決定をテキストで説明する。
- 参考スコア(独自算出の注目度): 9.942095197375801
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The detection of manipulated content, a prevalent form of fake news, has been widely studied in recent years. While existing solutions have been proven effective in fact-checking and analyzing fake news based on historical events, the reliance on either intrinsic knowledge obtained during training or manually curated context hinders them from tackling zero-day manipulated content, which can only be recognized with real-time contextual information. In this work, we propose Manicod, a tool designed for detecting zero-day manipulated content. Manicod first sources contextual information about the input claim from mainstream search engines, and subsequently vectorizes the context for the large language model (LLM) through retrieval-augmented generation (RAG). The LLM-based inference can produce a "truthful" or "manipulated" decision and offer a textual explanation for the decision. To validate the effectiveness of Manicod, we also propose a dataset comprising 4270 pieces of manipulated fake news derived from 2500 recent real-world news headlines. Manicod achieves an overall F1 score of 0.856 on this dataset and outperforms existing methods by up to 1.9x in F1 score on their benchmarks on fact-checking and claim verification.
- Abstract(参考訳): 近年,フェイクニュースの代表的な形態である操作済みコンテンツの検出が広く研究されている。
既存のソリューションは、過去の出来事に基づいて偽ニュースの事実チェックと分析に有効であることが証明されているが、トレーニング中に得られた本質的な知識や、手作業によるキュレーションによって、リアルタイムの文脈情報でしか認識できないゼロデイ操作コンテンツへの対処が妨げられている。
本研究では,ゼロデイ操作されたコンテンツを検出するためのツールであるManicodを提案する。
Manicodはまず、メインストリーム検索エンジンから入力クレームに関するコンテキスト情報を抽出し、その後、検索拡張生成(RAG)を通じて、大きな言語モデル(LLM)のコンテキストをベクトル化する。
LLMに基づく推論は「真実」あるいは「操作された」決定を生成し、その決定についてテキストによる説明を与えることができる。
また,Manicodの有効性を検証するために,2500件のニュース見出しから抽出した4270件のフェイクニュースからなるデータセットを提案する。
ManicodはこのデータセットでF1スコアの0.856を達成し、ファクトチェックとクレーム検証のベンチマークでF1スコアの最大1.9倍の既存のメソッドを上回ります。
関連論文リスト
- Detect, Investigate, Judge and Determine: A Knowledge-guided Framework for Few-shot Fake News Detection [50.079690200471454]
Few-Shot Fake News Detection (FS-FND) は、極めて低リソースのシナリオにおいて、非正確なニュースを実際のニュースと区別することを目的としている。
ソーシャルメディア上でのフェイクニュースの拡散や有害な影響により、このタスクは注目を集めている。
本稿では,内外からLLMを増強するDual-perspective Knowledge-Guided Fake News Detection (DKFND)モデルを提案する。
論文 参考訳(メタデータ) (2024-07-12T03:15:01Z) - Fake News Detection and Manipulation Reasoning via Large Vision-Language Models [38.457805116130004]
本稿では,Human-centric and Fact-related Fake News(HFFN)と呼ばれる偽ニュースの検出と操作の推論のためのベンチマークを紹介する。
このベンチマークでは、詳細なマニュアルアノテーションによって、人間の中心性と、高い事実的関連性を強調している。
M-DRUM(Multi-modal News Detection and Reasoning langUage Model)が提示される。
論文 参考訳(メタデータ) (2024-07-02T08:16:43Z) - How to Train Your Fact Verifier: Knowledge Transfer with Multimodal Open Models [95.44559524735308]
大規模言語またはマルチモーダルモデルに基づく検証は、偽コンテンツや有害コンテンツの拡散を緩和するためのオンラインポリシングメカニズムをスケールアップするために提案されている。
我々は,知識伝達の初期研究を通じて,継続的な更新を行うことなく基礎モデルの性能向上の限界をテストする。
最近の2つのマルチモーダルなファクトチェックベンチマークであるMochegとFakedditの結果は、知識伝達戦略がファクドディットのパフォーマンスを最先端よりも1.7%向上し、Mochegのパフォーマンスを2.9%向上させることができることを示唆している。
論文 参考訳(メタデータ) (2024-06-29T08:39:07Z) - ManiTweet: A New Benchmark for Identifying Manipulation of News on Social Media [74.93847489218008]
ソーシャルメディア上でのニュースの操作を識別し,ソーシャルメディア投稿の操作を検出し,操作された情報や挿入された情報を特定することを目的とした,新しいタスクを提案する。
この課題を研究するために,データ収集スキーマを提案し,3.6K対のツイートとそれに対応する記事からなるManiTweetと呼ばれるデータセットをキュレートした。
我々の分析では、このタスクは非常に難しいことを示し、大きな言語モデル(LLM)は不満足なパフォーマンスをもたらす。
論文 参考訳(メタデータ) (2023-05-23T16:40:07Z) - FNDaaS: Content-agnostic Detection of Fake News sites [2.1456348289599134]
本稿では,Fake News Detection-as-a Service (FND)を提案する。
FNDは過去のサイトで最大0.967のAUCスコアを達成でき、新しくフラッグされたサイトでは77-92%に達する。
論文 参考訳(メタデータ) (2022-12-13T11:17:32Z) - A Multi-Policy Framework for Deep Learning-Based Fake News Detection [0.31498833540989407]
フェイクニュース検出を自動化するフレームワークであるMPSC(Multi-Policy Statement Checker)を導入する。
MPSCは、深層学習技術を用いて、文自体とその関連するニュース記事を分析し、それが信頼できるか疑わしいかを予測する。
論文 参考訳(メタデータ) (2022-06-01T21:25:21Z) - Faking Fake News for Real Fake News Detection: Propaganda-loaded
Training Data Generation [105.20743048379387]
提案手法は,人間によるプロパガンダのスタイルや戦略から情報を得た学習例を生成するための新しいフレームワークである。
具体的には、生成した記事の有効性を確保するために、自然言語推論によって導かれる自己臨界シーケンストレーニングを行う。
実験の結果、PropaNewsでトレーニングされた偽ニュース検知器は、2つの公開データセットで3.62~7.69%のF1スコアで人書きの偽情報を検出するのに優れていることがわかった。
論文 参考訳(メタデータ) (2022-03-10T14:24:19Z) - Automated Evidence Collection for Fake News Detection [11.324403127916877]
本稿では,現在行われている偽ニュース検出手法を改良した新しい手法を提案する。
提案手法は,Web記事からエビデンスを抽出し,エビデンスとして扱うための適切なテキストを選択する。
我々の実験は、機械学習とディープラーニングに基づく手法の両方を用いて、我々のアプローチを広範囲に評価するのに役立つ。
論文 参考訳(メタデータ) (2021-12-13T09:38:41Z) - A Heuristic-driven Uncertainty based Ensemble Framework for Fake News
Detection in Tweets and News Articles [5.979726271522835]
ニュース項目が「本物」か「偽」かを自動的に識別する新しい偽ニュース検出システムについて述べる。
我々は,事前学習したモデルと統計的特徴融合ネットワークからなるアンサンブルモデルを用いた。
提案手法は,分類タスクの適切なクラス出力信頼度レベルとともに,信頼性の高い予測不確実性を定量化した。
論文 参考訳(メタデータ) (2021-04-05T06:35:30Z) - Two Stage Transformer Model for COVID-19 Fake News Detection and Fact
Checking [0.3441021278275805]
我々は、自然言語処理のための機械学習モデルの状態を用いて、新型コロナウイルスの偽ニュース検出のための2段階の自動パイプラインを開発する。
最初のモデルは、新型コロナウイルス(COVID-19)の特定のクレームに関するユーザーのクレームに関する最も関連性の高い事実を検索する、新しい事実チェックアルゴリズムを活用する。
第2のモデルは、クレームと、手動でキュレートされたCOVID-19データセットから取得した真事実の間のテキストの関連性を計算することによって、クレームの真理レベルを検証する。
論文 参考訳(メタデータ) (2020-11-26T11:50:45Z) - Machine Learning Explanations to Prevent Overtrust in Fake News
Detection [64.46876057393703]
本研究では、ニュースレビュープラットフォームに組み込んだ説明可能なAIアシスタントが、フェイクニュースの拡散と戦う効果について検討する。
我々は、ニュースレビューと共有インターフェースを設計し、ニュース記事のデータセットを作成し、4つの解釈可能なフェイクニュース検出アルゴリズムを訓練する。
説明可能なAIシステムについてより深く理解するために、説明プロセスにおけるユーザエンゲージメント、メンタルモデル、信頼、パフォーマンス対策の相互作用について議論する。
論文 参考訳(メタデータ) (2020-07-24T05:42:29Z) - Leveraging Declarative Knowledge in Text and First-Order Logic for
Fine-Grained Propaganda Detection [139.3415751957195]
本稿では,ニュース記事中のプロパガンダ的テキスト断片の検出について検討する。
本稿では,詳細なプロパガンダ手法の宣言的知識を注入する手法を提案する。
論文 参考訳(メタデータ) (2020-04-29T13:46:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。