Multi-Domain Causal Discovery in Bijective Causal Models
- URL: http://arxiv.org/abs/2504.21261v1
- Date: Wed, 30 Apr 2025 02:30:10 GMT
- Title: Multi-Domain Causal Discovery in Bijective Causal Models
- Authors: Kasra Jalaldoust, Saber Salehkaleybar, Negar Kiyavash,
- Abstract summary: We show that the causal diagram can be discovered under less restrictive functional assumptions compared to previous work.<n>We generalize a variety of models including additive noise model, LiNGAM, post-nonlinear model, and location-scale noise model.
- Score: 23.037286333436278
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider the problem of causal discovery (a.k.a., causal structure learning) in a multi-domain setting. We assume that the causal functions are invariant across the domains, while the distribution of the exogenous noise may vary. Under causal sufficiency (i.e., no confounders exist), we show that the causal diagram can be discovered under less restrictive functional assumptions compared to previous work. What enables causal discovery in this setting is bijective generation mechanisms (BGM), which ensures that the functional relation between the exogenous noise $E$ and the endogenous variable $Y$ is bijective and differentiable in both directions at every level of the cause variable $X = x$. BGM generalizes a variety of models including additive noise model, LiNGAM, post-nonlinear model, and location-scale noise model. Further, we derive a statistical test to find the parents set of the target variable. Experiments on various synthetic and real-world datasets validate our theoretical findings.
Related papers
- Identifiable Latent Polynomial Causal Models Through the Lens of Change [82.14087963690561]
Causal representation learning aims to unveil latent high-level causal representations from observed low-level data.<n>One of its primary tasks is to provide reliable assurance of identifying these latent causal models, known as identifiability.
arXiv Detail & Related papers (2023-10-24T07:46:10Z) - Towards Characterizing Domain Counterfactuals For Invertible Latent Causal Models [15.817239008727789]
In this work, we analyze a specific type of causal query called domain counterfactuals, which hypothesizes what a sample would have looked like if it had been generated in a different domain.
We show that recovering the latent Structural Causal Model (SCM) is unnecessary for estimating domain counterfactuals.
We also develop a theoretically grounded practical algorithm that simplifies the modeling process to generative model estimation.
arXiv Detail & Related papers (2023-06-20T04:19:06Z) - A Causal Framework for Decomposing Spurious Variations [68.12191782657437]
We develop tools for decomposing spurious variations in Markovian and Semi-Markovian models.
We prove the first results that allow a non-parametric decomposition of spurious effects.
The described approach has several applications, ranging from explainable and fair AI to questions in epidemiology and medicine.
arXiv Detail & Related papers (2023-06-08T09:40:28Z) - Cause-Effect Inference in Location-Scale Noise Models: Maximum
Likelihood vs. Independence Testing [19.23479356810746]
A fundamental problem of causal discovery is cause-effect inference, learning the correct causal direction between two random variables.
Recently introduced heteroscedastic location-scale noise functional models (LSNMs) combine expressive power with identifiability guarantees.
We show that LSNM model selection based on maximizing likelihood achieves state-of-the-art accuracy, when the noise distributions are correctly specified.
arXiv Detail & Related papers (2023-01-26T20:48:32Z) - On the Identifiability and Estimation of Causal Location-Scale Noise
Models [122.65417012597754]
We study the class of location-scale or heteroscedastic noise models (LSNMs)
We show the causal direction is identifiable up to some pathological cases.
We propose two estimators for LSNMs: an estimator based on (non-linear) feature maps, and one based on neural networks.
arXiv Detail & Related papers (2022-10-13T17:18:59Z) - Differentiable Invariant Causal Discovery [106.87950048845308]
Learning causal structure from observational data is a fundamental challenge in machine learning.
This paper proposes Differentiable Invariant Causal Discovery (DICD) to avoid learning spurious edges and wrong causal directions.
Extensive experiments on synthetic and real-world datasets verify that DICD outperforms state-of-the-art causal discovery methods up to 36% in SHD.
arXiv Detail & Related papers (2022-05-31T09:29:07Z) - Causal Discovery in Linear Structural Causal Models with Deterministic
Relations [27.06618125828978]
We focus on the task of causal discovery form observational data.
We derive a set of necessary and sufficient conditions for unique identifiability of the causal structure.
arXiv Detail & Related papers (2021-10-30T21:32:42Z) - Causal Identification with Additive Noise Models: Quantifying the Effect
of Noise [5.037636944933989]
This work investigates the impact of different noise levels on the ability of Additive Noise Models to identify the direction of the causal relationship.
We use an exhaustive range of models where the level of additive noise gradually changes from 1% to 10000% of the causes' noise level.
The results of the experiments show that ANMs methods can fail to capture the true causal direction for some levels of noise.
arXiv Detail & Related papers (2021-10-15T13:28:33Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
Causal mechanisms can be described by structural causal models.
One major drawback of state-of-the-art artificial intelligence is its lack of explainability.
arXiv Detail & Related papers (2021-09-06T14:52:58Z) - The Effect of Noise Level on Causal Identification with Additive Noise
Models [0.0]
We consider the impact of different noise levels on the ability of Additive Noise Models to identify the direction of the causal relationship.
Two specific methods have been selected, textitRegression with Subsequent Independence Test and textitIdentification using Conditional Variances
The results of the experiments show that these methods can fail to capture the true causal direction for some levels of noise.
arXiv Detail & Related papers (2021-08-24T11:18:41Z) - Variational Causal Networks: Approximate Bayesian Inference over Causal
Structures [132.74509389517203]
We introduce a parametric variational family modelled by an autoregressive distribution over the space of discrete DAGs.
In experiments, we demonstrate that the proposed variational posterior is able to provide a good approximation of the true posterior.
arXiv Detail & Related papers (2021-06-14T17:52:49Z) - Information-Theoretic Approximation to Causal Models [0.0]
We show that it is possible to solve the problem of inferring the causal direction and causal effect between two random variables from a finite sample.
We embed distributions that originate from samples of X and Y into a higher dimensional probability space.
We show that this information-theoretic approximation to causal models (IACM) can be done by solving a linear optimization problem.
arXiv Detail & Related papers (2020-07-29T18:34:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.