論文の概要: ShorterBetter: Guiding Reasoning Models to Find Optimal Inference Length for Efficient Reasoning
- arxiv url: http://arxiv.org/abs/2504.21370v2
- Date: Fri, 16 May 2025 20:59:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-20 14:57:10.633473
- Title: ShorterBetter: Guiding Reasoning Models to Find Optimal Inference Length for Efficient Reasoning
- Title(参考訳): ShorterBetter: 効率的な推論に最適な推論長を求めるための推論モデル
- Authors: Jingyang Yi, Jiazheng Wang, Sida Li,
- Abstract要約: そこで本研究では,手動による指導を必要とせずに,推論モデルによる最適なCoT長の学習を可能にする,簡易かつ効果的な強化学習手法を提案する。
ShorterBetterは、ドメイン内およびドメイン外推論タスクの出力長を50%-80%削減する。
我々の推論トレース分析は、不要な反復、過剰な自己検証、代替品の過剰探索を減らし、ショーターベッターが推論トレースの構造を洗練することを示している。
- 参考スコア(独自算出の注目度): 1.0416697066889342
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent models such as OpenAI o1 and DeepSeek-R1 have demonstrated strong performance on reasoning-intensive tasks by generating extended Chain-of-Thought (CoT) traces. While longer reasoning helps with thorough exploration of solution paths for complex problems, it also often leads to inefficient and redundant outputs--a phenomenon commonly described as overthinking. In this paper, we propose ShorterBetter, a simple yet effective reinforcement learning method that enables reasoning models to learn their own optimal CoT lengths without manual supervision. We define the Sample Optimal Length (SOL) as the length of the shortest correct response among multiple generations, which serves as a dynamic reward signal to guide the model toward efficient reasoning. Applied to DeepSeek-Distill-Qwen-1.5B/7B as base models, ShorterBetter achieves 50%-80% reduction in output lengths in both in-domain and out-of-domain reasoning tasks while maintaining accuracy. Our reasoning trace analysis shows that ShorterBetter refines the structure of the reasoning traces by reducing unnecessary repetition, excessive self-verification, and over-exploration of alternatives.
- Abstract(参考訳): OpenAI o1やDeepSeek-R1といった最近のモデルは、拡張されたChain-of-Thought(CoT)トレースを生成することによって、推論集約的なタスクに強いパフォーマンスを示している。
より長い推論は、複雑な問題に対する解道の徹底的な探索に役立つが、しばしば非効率で冗長な出力につながる。
本論文では,手動による指導なしに推論モデルで最適なCoT長を学習できる簡易かつ効果的な強化学習手法であるShorterBetterを提案する。
我々は,サンプル最適長(SOL)を複数世代間の最短応答長として定義し,効率的な推論に向けてモデルを導くための動的報酬信号として機能する。
ベースモデルとしてDeepSeek-Distill-Qwen-1.5B/7Bに適用されたShorterBetterは、精度を維持しながら、ドメイン内およびドメイン外の推論タスクの出力長を50%-80%削減する。
我々の推論トレース分析は、不要な反復、過剰な自己検証、代替品の過剰探索を減らし、ショーターベッターが推論トレースの構造を洗練することを示している。
関連論文リスト
- Between Underthinking and Overthinking: An Empirical Study of Reasoning Length and correctness in LLMs [52.405085773954596]
大規模な言語モデル(LLM)は、単純な問題を克服し、不要に長いアウトプットを生成し、より難しいものを過小評価する傾向にある。
これは、モデルが問題の難しさを誤認し、応答長を適切に調整できないことを示唆している。
実験の結果, 許容精度を維持しつつ, 生成時間を大幅に短縮できることがわかった。
論文 参考訳(メタデータ) (2025-04-30T18:48:06Z) - AdaR1: From Long-CoT to Hybrid-CoT via Bi-Level Adaptive Reasoning Optimization [86.56120216550232]
適応的で効率的な推論のための新しい2段階のフレームワークを提案する。
まず、長いCoTモデルと短いCoTモデルを組み合わせてハイブリッド推論モデルを構築する。
第二に、モデルに適切な推論スタイルを選択するための2段階の選好訓練を適用する。
論文 参考訳(メタデータ) (2025-04-30T14:01:45Z) - Think Deep, Think Fast: Investigating Efficiency of Verifier-free Inference-time-scaling Methods [39.89239733570008]
本研究は推論モデルと非推論モデルの両方に対する推論時間スケーリング手法を包括的に解析する。
非推論モデルは、非常に高い推論予算にもかかわらず、推論モデルに大きく遅れていることが分かっています。
推論モデルでは、多数決は堅牢な推論戦略であり、一般的に競争力があるか、あるいは他のより洗練されたITC手法よりも優れていることが証明されている。
論文 参考訳(メタデータ) (2025-04-18T19:32:55Z) - Short-Path Prompting in LLMs: Analyzing Reasoning Instability and Solutions for Robust Performance [33.16322104912836]
大規模言語モデル (LLM) の推論は、主にチェーン・オブ・シント (CoT) のアプローチによるものである。
LLMは、推論に関連する質問に応答するときに、長くて詳細なCoT経路を提供するように、命令調整される。
人間は自然に認知的な惨事であり、言語モデルにかなり短い反応を与えるよう促す。
論文 参考訳(メタデータ) (2025-04-13T14:12:14Z) - Stop Overthinking: A Survey on Efficient Reasoning for Large Language Models [54.04678363287392]
大規模言語モデル(LLM)は複雑なタスクにおいて顕著な機能を示した。
OpenAI o1とDeepSeek-R1の最近の進歩は、System-2推論ドメインのパフォーマンスをさらに改善した。
論文 参考訳(メタデータ) (2025-03-20T17:59:38Z) - Towards Thinking-Optimal Scaling of Test-Time Compute for LLM Reasoning [113.49074603075032]
近年の研究では、モデルをより長い思考の連鎖(CoTs)を通して考える時間を増やすことで、複雑な推論タスクにおいて大幅な改善が得られることが示されている。
より長いCoTによるスケーリングが、特定のドメインにおけるLarge Language Model(LLM)の推論性能を損なうかどうかを考察する。
論文 参考訳(メタデータ) (2025-02-25T10:48:05Z) - When More is Less: Understanding Chain-of-Thought Length in LLMs [53.77747102201451]
CoT推論は大規模言語モデル(LLM)の多段階推論能力を高める
しかし、ほとんどのモデルやタスクでは、CoT長の増加は一貫して推論精度の向上につながりますか?
本稿では, 推論ステップの数が増加するにつれて, 性能は向上するが, 最終的には低下する,というニュアンスな関係を観察する。
論文 参考訳(メタデータ) (2025-02-11T05:28:59Z) - O1-Pruner: Length-Harmonizing Fine-Tuning for O1-Like Reasoning Pruning [98.3430004984531]
精度を維持しながら推論オーバーヘッドを最小限に抑えるため,Longth-Harmonizing Fine-Tuning (O1-Pruner)を提案する。
私たちのコードはもうすぐhttps://github.com/StarDewXXX/O1-Pruner.comで公開されます。
論文 参考訳(メタデータ) (2025-01-22T01:35:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。