Kernel Density Machines
- URL: http://arxiv.org/abs/2504.21419v2
- Date: Fri, 06 Jun 2025 01:58:34 GMT
- Title: Kernel Density Machines
- Authors: Damir Filipovic, Paul Schneider,
- Abstract summary: kernel density machines (KDM) are non-parametric estimators of a Radon--Nikodym derivative.<n>We provide rigorous theoretical guarantees, including consistency, a functional central limit theorem, and finite-sample error bounds.<n> Empirical results based on simulated and real data demonstrate the efficacy and precision of KDM.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce kernel density machines (KDM), a nonparametric estimator of a Radon--Nikodym derivative, based on reproducing kernel Hilbert spaces. KDM applies to general probability measures on countably generated measurable spaces under minimal assumptions. For computational efficiency, we incorporate a low-rank approximation with precisely controlled error that grants scalability to large-sample settings. We provide rigorous theoretical guarantees, including asymptotic consistency, a functional central limit theorem, and finite-sample error bounds, establishing a strong foundation for practical use. Empirical results based on simulated and real data demonstrate the efficacy and precision of KDM.
Related papers
- Kernel Quantile Embeddings and Associated Probability Metrics [12.484632369259659]
We introduce the notion of kernel quantile embeddings (KQEs)<n>We use KQEs to construct a family of distances that: (i) are probability metrics under weaker kernel conditions than MMD; (ii) recover a kernelised form of the sliced Wasserstein distance; and (iii) can be efficiently estimated with near-linear cost.
arXiv Detail & Related papers (2025-05-26T18:27:17Z) - Stochastic Marginal Likelihood Gradients using Neural Tangent Kernels [78.6096486885658]
We introduce lower bounds to the linearized Laplace approximation of the marginal likelihood.
These bounds are amenable togradient-based optimization and allow to trade off estimation accuracy against computational complexity.
arXiv Detail & Related papers (2023-06-06T19:02:57Z) - Targeted Separation and Convergence with Kernel Discrepancies [61.973643031360254]
kernel-based discrepancy measures are required to (i) separate a target P from other probability measures or (ii) control weak convergence to P.
In this article we derive new sufficient and necessary conditions to ensure (i) and (ii)
For MMDs on separable metric spaces, we characterize those kernels that separate Bochner embeddable measures and introduce simple conditions for separating all measures with unbounded kernels.
arXiv Detail & Related papers (2022-09-26T16:41:16Z) - A Fourier representation of kernel Stein discrepancy with application to
Goodness-of-Fit tests for measures on infinite dimensional Hilbert spaces [6.437931786032493]
Kernel Stein discrepancy (KSD) is a kernel-based measure of discrepancy between probability measures.
We provide the first analysis of KSD in the generality of data lying in a separable Hilbert space.
This allows us to prove that KSD can separate measures and thus is valid to use in practice.
arXiv Detail & Related papers (2022-06-09T15:04:18Z) - TAKDE: Temporal Adaptive Kernel Density Estimator for Real-Time Dynamic
Density Estimation [16.45003200150227]
We name the temporal adaptive kernel density estimator (TAKDE)
TAKDE is theoretically optimal in terms of the worst-case AMISE.
We provide numerical experiments using synthetic and real-world datasets, showing that TAKDE outperforms other state-of-the-art dynamic density estimators.
arXiv Detail & Related papers (2022-03-15T23:38:32Z) - Nystr\"om Kernel Mean Embeddings [92.10208929236826]
We propose an efficient approximation procedure based on the Nystr"om method.
It yields sufficient conditions on the subsample size to obtain the standard $n-1/2$ rate.
We discuss applications of this result for the approximation of the maximum mean discrepancy and quadrature rules.
arXiv Detail & Related papers (2022-01-31T08:26:06Z) - Keep it Tighter -- A Story on Analytical Mean Embeddings [0.6445605125467574]
Kernel techniques are among the most popular and flexible approaches in data science.
Mean embedding gives rise to a divergence measure referred to as maximum mean discrepancy (MMD)
In this paper we focus on the problem of MMD estimation when the mean embedding of one of the underlying distributions is available analytically.
arXiv Detail & Related papers (2021-10-15T21:29:27Z) - Density-Based Clustering with Kernel Diffusion [59.4179549482505]
A naive density corresponding to the indicator function of a unit $d$-dimensional Euclidean ball is commonly used in density-based clustering algorithms.
We propose a new kernel diffusion density function, which is adaptive to data of varying local distributional characteristics and smoothness.
arXiv Detail & Related papers (2021-10-11T09:00:33Z) - Optimal policy evaluation using kernel-based temporal difference methods [78.83926562536791]
We use kernel Hilbert spaces for estimating the value function of an infinite-horizon discounted Markov reward process.
We derive a non-asymptotic upper bound on the error with explicit dependence on the eigenvalues of the associated kernel operator.
We prove minimax lower bounds over sub-classes of MRPs.
arXiv Detail & Related papers (2021-09-24T14:48:20Z) - A Note on Optimizing Distributions using Kernel Mean Embeddings [94.96262888797257]
Kernel mean embeddings represent probability measures by their infinite-dimensional mean embeddings in a reproducing kernel Hilbert space.
We show that when the kernel is characteristic, distributions with a kernel sum-of-squares density are dense.
We provide algorithms to optimize such distributions in the finite-sample setting.
arXiv Detail & Related papers (2021-06-18T08:33:45Z) - Improved Estimation of Concentration Under $\ell_p$-Norm Distance
Metrics Using Half Spaces [14.947511752748005]
Concentration of measure has been argued to be the fundamental cause of adversarial vulnerability.
We propose a method to estimate the concentration of any empirical dataset under $ell_p$-norm distance metrics.
Our proposed algorithm is more efficient than Mahloujifar et al.'s, and our experiments on synthetic datasets and image benchmarks demonstrate that it is able to find much tighter intrinsic robustness bounds.
arXiv Detail & Related papers (2021-03-24T01:16:28Z) - Amortized Conditional Normalized Maximum Likelihood: Reliable Out of
Distribution Uncertainty Estimation [99.92568326314667]
We propose the amortized conditional normalized maximum likelihood (ACNML) method as a scalable general-purpose approach for uncertainty estimation.
Our algorithm builds on the conditional normalized maximum likelihood (CNML) coding scheme, which has minimax optimal properties according to the minimum description length principle.
We demonstrate that ACNML compares favorably to a number of prior techniques for uncertainty estimation in terms of calibration on out-of-distribution inputs.
arXiv Detail & Related papers (2020-11-05T08:04:34Z) - Imitation with Neural Density Models [98.34503611309256]
We propose a new framework for Imitation Learning (IL) via density estimation of the expert's occupancy measure followed by Imitation Occupancy Entropy Reinforcement Learning (RL) using the density as a reward.
Our approach maximizes a non-adversarial model-free RL objective that provably lower bounds reverse Kullback-Leibler divergence between occupancy measures of the expert and imitator.
arXiv Detail & Related papers (2020-10-19T19:38:36Z) - Nonparametric Density Estimation from Markov Chains [68.8204255655161]
We introduce a new nonparametric density estimator inspired by Markov Chains, and generalizing the well-known Kernel Density Estor.
Our estimator presents several benefits with respect to the usual ones and can be used straightforwardly as a foundation in all density-based algorithms.
arXiv Detail & Related papers (2020-09-08T18:33:42Z) - Learning Implicit Generative Models with Theoretical Guarantees [12.761710596142109]
We propose a textbfunified textbfframework for textbfimplicit textbfmodeling (UnifiGem)
UnifiGem integrates approaches from optimal transport, numerical ODE, density-ratio (density-difference) estimation and deep neural networks.
Experimental results on both synthetic datasets and real benchmark datasets support our theoretical findings and demonstrate the effectiveness of UnifiGem.
arXiv Detail & Related papers (2020-02-07T15:55:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.