UAV Marketplace Simulation Tool for BVLOS Operations
- URL: http://arxiv.org/abs/2504.21428v1
- Date: Wed, 30 Apr 2025 08:36:22 GMT
- Title: UAV Marketplace Simulation Tool for BVLOS Operations
- Authors: Kıvanç Şerefoğlu, Önder Gürcan, Reyhan Aydoğan,
- Abstract summary: The tool models UAV collaboration and mission execution in dynamic and adversarial conditions.<n>The tool is versatile for testing and improving UAV coordination strategies in real-world applications.
- Score: 0.38233569758620056
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a simulation tool for evaluating team formation in autonomous multi-UAV (Unmanned Aerial Vehicle) missions that operate Beyond Visual Line of Sight (BVLOS). The tool models UAV collaboration and mission execution in dynamic and adversarial conditions, where Byzantine UAVs attempt to disrupt operations. Our tool allows researchers to integrate and compare various team formation strategies in a controlled environment with configurable mission parameters and adversarial behaviors. The log of each simulation run is stored in a structured way along with performance metrics so that statistical analysis could be done straightforwardly. The tool is versatile for testing and improving UAV coordination strategies in real-world applications.
Related papers
- LLM Meets the Sky: Heuristic Multi-Agent Reinforcement Learning for Secure Heterogeneous UAV Networks [57.27815890269697]
This work focuses on maximizing the secrecy rate in heterogeneous UAV networks (HetUAVNs) under energy constraints.<n>We introduce a Large Language Model (LLM)-guided multi-agent learning approach.<n>Results show that our method outperforms existing baselines in secrecy and energy efficiency.
arXiv Detail & Related papers (2025-07-23T04:22:57Z) - UAV-Flow Colosseo: A Real-World Benchmark for Flying-on-a-Word UAV Imitation Learning [39.07541452390107]
Unmanned Aerial Vehicles (UAVs) are evolving into language-interactive platforms, enabling more intuitive forms of human-drone interaction.<n>We formalize this problem as the Flying-on-a-Word (Flow) task and introduce UAV imitation learning as an effective approach.<n>We present UAV-Flow, the first real-world benchmark for language-conditioned, fine-grained UAV control.
arXiv Detail & Related papers (2025-05-21T16:31:28Z) - Iterative Tool Usage Exploration for Multimodal Agents via Step-wise Preference Tuning [69.32855772335624]
Multimodal agents, which integrate a controller e.g., a vision language model, with external tools, have demonstrated remarkable capabilities in tackling complex multimodal tasks.<n>Existing approaches for training these agents depend on extensive human-annotated task-answer pairs and tool trajectories.<n>We propose an iterative tool usage exploration method for multimodal agents without any pre-collected data, namely SPORT.<n>SPORT has four iterative components: task synthesis, step sampling, step verification, and preference tuning.
arXiv Detail & Related papers (2025-04-30T12:01:27Z) - UAVs Meet LLMs: Overviews and Perspectives Toward Agentic Low-Altitude Mobility [33.73170899086857]
Low-altitude mobility, exemplified by unmanned aerial vehicles (UAVs), has introduced transformative advancements across various domains.<n>This paper explores the integration of large language models (LLMs) and UAVs.<n>It categorizes and analyzes key tasks and application scenarios where UAVs and LLMs converge.
arXiv Detail & Related papers (2025-01-04T17:32:12Z) - TraceVLA: Visual Trace Prompting Enhances Spatial-Temporal Awareness for Generalist Robotic Policies [95.30717188630432]
We introduce visual trace prompting to facilitate VLA models' spatial-temporal awareness for action prediction.<n>We develop a new TraceVLA model by finetuning OpenVLA on our own collected dataset of 150K robot manipulation trajectories.<n>We present a compact VLA model based on 4B Phi-3-Vision, pretrained on the Open-X-Embodiment and finetuned on our dataset.
arXiv Detail & Related papers (2024-12-13T18:40:51Z) - Autonomous Vehicle Controllers From End-to-End Differentiable Simulation [60.05963742334746]
We propose a differentiable simulator and design an analytic policy gradients (APG) approach to training AV controllers.
Our proposed framework brings the differentiable simulator into an end-to-end training loop, where gradients of environment dynamics serve as a useful prior to help the agent learn a more grounded policy.
We find significant improvements in performance and robustness to noise in the dynamics, as well as overall more intuitive human-like handling.
arXiv Detail & Related papers (2024-09-12T11:50:06Z) - UAV-enabled Collaborative Beamforming via Multi-Agent Deep Reinforcement Learning [79.16150966434299]
We formulate a UAV-enabled collaborative beamforming multi-objective optimization problem (UCBMOP) to maximize the transmission rate of the UVAA and minimize the energy consumption of all UAVs.
We use the heterogeneous-agent trust region policy optimization (HATRPO) as the basic framework, and then propose an improved HATRPO algorithm, namely HATRPO-UCB.
arXiv Detail & Related papers (2024-04-11T03:19:22Z) - Learning to Use Tools via Cooperative and Interactive Agents [58.77710337157665]
Tool learning empowers large language models (LLMs) as agents to use external tools and extend their utility.
We propose ConAgents, a Cooperative and interactive Agents framework, which coordinates three specialized agents for tool selection, tool execution, and action calibration separately.
Our experiments on three datasets show that the LLMs, when equipped with ConAgents, outperform baselines with substantial improvement.
arXiv Detail & Related papers (2024-03-05T15:08:16Z) - Tiny Multi-Agent DRL for Twins Migration in UAV Metaverses: A Multi-Leader Multi-Follower Stackelberg Game Approach [57.15309977293297]
The synergy between Unmanned Aerial Vehicles (UAVs) and metaverses is giving rise to an emerging paradigm named UAV metaverses.
We propose a tiny machine learning-based Stackelberg game framework based on pruning techniques for efficient UT migration in UAV metaverses.
arXiv Detail & Related papers (2024-01-18T02:14:13Z) - Object Detection and Tracking with Autonomous UAV [0.3044887242295643]
The rotary wing UAV is successfully performed various tasks such as locking on the targets, tracking, and sharing the relevant data with surrounding vehicles.
Various software technologies such as API communication, ground control station configuration, autonomous movement algorithms, computer vision, and deep learning are employed.
arXiv Detail & Related papers (2022-06-26T18:48:59Z) - UAV-Aided Multi-Community Federated Learning [19.795430742525532]
We investigate the problem of an online trajectory design for an Unmanned Aerial Vehicle (UAV) in a Federated Learning (FL) setting.
In this setting, spatially distributed devices belonging to each community collaboratively contribute towards training their community model via wireless links provided by the UAV.
We propose a metric as a proxy for the training performance of the different tasks.
arXiv Detail & Related papers (2022-06-04T19:00:40Z) - A Software Tool for Evaluating Unmanned Autonomous Systems [0.9786690381850356]
This paper presents an example of one such simulation-based technology tool, named as the Data-Driven Intelligent Prediction Tool (DIPT)
DIPT was developed for testing a multi-platform Unmanned Aerial Vehicle (UAV) system capable of conducting collaborative search missions.
arXiv Detail & Related papers (2021-11-21T18:17:57Z) - Multitask Adaptation by Retrospective Exploration with Learned World
Models [77.34726150561087]
We propose a meta-learned addressing model called RAMa that provides training samples for the MBRL agent taken from task-agnostic storage.
The model is trained to maximize the expected agent's performance by selecting promising trajectories solving prior tasks from the storage.
arXiv Detail & Related papers (2021-10-25T20:02:57Z) - A Multi-UAV System for Exploration and Target Finding in Cluttered and
GPS-Denied Environments [68.31522961125589]
We propose a framework for a team of UAVs to cooperatively explore and find a target in complex GPS-denied environments with obstacles.
The team of UAVs autonomously navigates, explores, detects, and finds the target in a cluttered environment with a known map.
Results indicate that the proposed multi-UAV system has improvements in terms of time-cost, the proportion of search area surveyed, as well as successful rates for search and rescue missions.
arXiv Detail & Related papers (2021-07-19T12:54:04Z) - PipeSim: Trace-driven Simulation of Large-Scale AI Operations Platforms [4.060731229044571]
We present a trace-driven simulation-based experimentation and analytics environment for large-scale AI systems.
Analytics data from a production-grade AI platform developed at IBM are used to build a comprehensive simulation model.
We implement the model in a standalone, discrete event simulator, and provide a toolkit for running experiments.
arXiv Detail & Related papers (2020-06-22T19:55:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.