論文の概要: A Report on the llms evaluating the high school questions
- arxiv url: http://arxiv.org/abs/2505.00057v1
- Date: Wed, 30 Apr 2025 11:54:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:55.127039
- Title: A Report on the llms evaluating the high school questions
- Title(参考訳): 高校生の質問に対するllms評価に関する調査報告
- Authors: Zhu Jiawei, Chen Wei,
- Abstract要約: 本報告は,高等学校理科の課題解決における大規模言語モデル(LLM)の性能評価を目的とする。
正確性、応答時間、論理的推論、創造性といった指標に基づいて総合的な評価を行った。
その結果, LLMは特定の面において優れた性能を発揮するが, 論理的推論や創造的問題解決にはまだ改善の余地があることが示唆された。
- 参考スコア(独自算出の注目度): 5.270268762282824
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This report aims to evaluate the performance of large language models (LLMs) in solving high school science questions and to explore their potential applications in the educational field. With the rapid development of LLMs in the field of natural language processing, their application in education has attracted widespread attention. This study selected mathematics exam questions from the college entrance examinations (2019-2023) as evaluation data and utilized at least eight LLM APIs to provide answers. A comprehensive assessment was conducted based on metrics such as accuracy, response time, logical reasoning, and creativity. Through an in-depth analysis of the evaluation results, this report reveals the strengths and weaknesses of LLMs in handling high school science questions and discusses their implications for educational practice. The findings indicate that although LLMs perform excellently in certain aspects, there is still room for improvement in logical reasoning and creative problem-solving. This report provides an empirical foundation for further research and application of LLMs in the educational field and offers suggestions for improvement.
- Abstract(参考訳): 本報告は,高等学校理科の課題解決における大規模言語モデル(LLM)の性能評価と,その教育分野への応用の可能性を検討することを目的とする。
自然言語処理分野におけるLLMの急速な発展に伴い,その教育への応用が注目されている。
本研究は,大学入学試験(2019-2023)から数学試験を評価データとして選抜し,少なくとも8つのLDM APIを用いて回答を得た。
正確性、応答時間、論理的推論、創造性といった指標に基づいて総合的な評価を行った。
本報告は,評価結果の詳細な分析を通じて,高校理科の課題に対処する上でのLLMの長所と短所を明らかにし,その教育実践への影響について考察する。
その結果, LLMは特定の面において優れた性能を発揮するが, 論理的推論や創造的問題解決にはまだ改善の余地があることが示唆された。
本報告は、LLMの教育分野におけるさらなる研究と応用のための実証的基盤を提供し、改善のための提案を提供する。
関連論文リスト
- Truth or Mirage? Towards End-to-End Factuality Evaluation with LLM-Oasis [78.07225438556203]
LLM-Oasisは、エンド・ツー・エンドの事実性評価をトレーニングするための最大のリソースである。
ウィキペディアからクレームを抽出し、これらのクレームのサブセットを偽造し、事実と非事実のテキストのペアを生成することで構築される。
次に、データセットの品質を検証し、事実性評価システムのための金の標準テストセットを作成するために、人間のアノテータに依存します。
論文 参考訳(メタデータ) (2024-11-29T12:21:15Z) - DnA-Eval: Enhancing Large Language Model Evaluation through Decomposition and Aggregation [75.81096662788254]
大規模言語モデル(LLM)はスケーラブルで経済的な評価指標である。
これらの評価者がどの程度信頼できるかという問題は、重要な研究課題として浮上している。
本稿では,デコンプリートとアグリゲートを提案し,その評価プロセスを教育実践に基づいて異なる段階に分解する。
論文 参考訳(メタデータ) (2024-05-24T08:12:30Z) - SciAssess: Benchmarking LLM Proficiency in Scientific Literature Analysis [26.111514038691837]
SciAssessは、科学文献分析におけるLarge Language Models(LLM)の総合的な評価のためのベンチマークである。
記憶機能評価(L1)、記憶機能評価(L2)、分析・推論機能評価(L3)により,LLMの有効性を徹底的に評価することを目的とする。
それは、生物学、化学、材料、医学など、様々な科学分野から引き出された様々なタスクを含んでいる。
論文 参考訳(メタデータ) (2024-03-04T12:19:28Z) - FELM: Benchmarking Factuality Evaluation of Large Language Models [40.78878196872095]
本稿では,Felmと呼ばれる大規模言語モデルのファクチュアリティ評価のためのベンチマークを紹介する。
我々は,大規模言語モデルから生成された応答を収集し,微粒な方法で事実ラベルを注釈付けする。
その結果,検索は事実性評価に役立つが,現在のLCMは事実の誤りを忠実に検出するには不十分であることがわかった。
論文 参考訳(メタデータ) (2023-10-01T17:37:31Z) - Through the Lens of Core Competency: Survey on Evaluation of Large
Language Models [27.271533306818732]
大規模言語モデル(LLM)は優れた性能と幅広い実用性を持っている。
既存の評価タスクは、現実世界のシナリオにおける幅広いアプリケーションに追いつくのは難しい。
LLMの4つのコア能力は、推論、知識、信頼性、安全性などである。
この能力アーキテクチャの下では、類似したタスクを組み合わせて対応する能力を反映し、新しいタスクをシステムに簡単に追加することができる。
論文 参考訳(メタデータ) (2023-08-15T17:40:34Z) - SciBench: Evaluating College-Level Scientific Problem-Solving Abilities of Large Language Models [70.5763210869525]
拡張ベンチマークスイートSciBench for Large Language Model (LLM)を導入する。
SciBenchには、数学、化学、物理学の分野から、さまざまな大学レベルの科学的問題を含むデータセットが含まれている。
その結果、現在のLLMは満足のいく性能を達成できないことが判明し、全体のスコアは43.22%に過ぎなかった。
論文 参考訳(メタデータ) (2023-07-20T07:01:57Z) - A Survey on Evaluation of Large Language Models [87.60417393701331]
大規模言語モデル(LLM)は、学術と産業の両方で人気が高まっている。
本稿では,評価方法,評価方法,評価方法の3つの重要な側面に焦点をあてる。
論文 参考訳(メタデータ) (2023-07-06T16:28:35Z) - CMMLU: Measuring massive multitask language understanding in Chinese [133.70911295934746]
本稿では, 自然科学, 社会科学, 工学, 人文科学など, さまざまな分野をカバーする総合的な中国のベンチマークを紹介する。
CMMLUは、中国語の文脈における大きな言語モデルの知識と推論能力の評価におけるギャップを埋める。
論文 参考訳(メタデータ) (2023-06-15T15:49:51Z) - Sentiment Analysis in the Era of Large Language Models: A Reality Check [69.97942065617664]
本稿では,大規模言語モデル(LLM)の様々な感情分析タスクの実行能力について検討する。
26のデータセット上の13のタスクのパフォーマンスを評価し、ドメイン固有のデータセットに基づいて訓練された小言語モデル(SLM)と比較した。
論文 参考訳(メタデータ) (2023-05-24T10:45:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。