Generative Machine Learning in Adaptive Control of Dynamic Manufacturing Processes: A Review
- URL: http://arxiv.org/abs/2505.00210v1
- Date: Wed, 30 Apr 2025 22:48:04 GMT
- Title: Generative Machine Learning in Adaptive Control of Dynamic Manufacturing Processes: A Review
- Authors: Suk Ki Lee, Hyunwoong Ko,
- Abstract summary: We show generative machine learning's potential for manufacturing control through decision-making applications, process guidance, simulation, and digital twins.<n>We propose future research directions aimed at developing integrated frameworks that combine generative ML and control technologies to address the dynamic complexities of modern manufacturing systems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Dynamic manufacturing processes exhibit complex characteristics defined by time-varying parameters, nonlinear behaviors, and uncertainties. These characteristics require sophisticated in-situ monitoring techniques utilizing multimodal sensor data and adaptive control systems that can respond to real-time feedback while maintaining product quality. Recently, generative machine learning (ML) has emerged as a powerful tool for modeling complex distributions and generating synthetic data while handling these manufacturing uncertainties. However, adopting these generative technologies in dynamic manufacturing systems lacks a functional control-oriented perspective to translate their probabilistic understanding into actionable process controls while respecting constraints. This review presents a functional classification of Prediction-Based, Direct Policy, Quality Inference, and Knowledge-Integrated approaches, offering a perspective for understanding existing ML-enhanced control systems and incorporating generative ML. The analysis of generative ML architectures within this framework demonstrates control-relevant properties and potential to extend current ML-enhanced approaches where conventional methods prove insufficient. We show generative ML's potential for manufacturing control through decision-making applications, process guidance, simulation, and digital twins, while identifying critical research gaps: separation between generation and control functions, insufficient physical understanding of manufacturing phenomena, and challenges adapting models from other domains. To address these challenges, we propose future research directions aimed at developing integrated frameworks that combine generative ML and control technologies to address the dynamic complexities of modern manufacturing systems.
Related papers
- Model-based controller assisted domain randomization in deep reinforcement learning: application to nonlinear powertrain control [0.0]
This study proposes a new robust control approach using the framework of deep reinforcement learning (DRL)<n>The problem setup is modeled via the latent Markov decision process (LMDP), a set of vanilla MDPs, for a controlled system subject to uncertainties and nonlinearities.<n>Compared to traditional DRL-based controls, the proposed controller design is smarter in that we can achieve a high level of generalization ability.
arXiv Detail & Related papers (2025-04-28T12:09:07Z) - Specifications: The missing link to making the development of LLM systems an engineering discipline [65.10077876035417]
We discuss the progress the field has made so far-through advances like structured outputs, process supervision, and test-time compute.<n>We outline several future directions for research to enable the development of modular and reliable LLM-based systems.
arXiv Detail & Related papers (2024-11-25T07:48:31Z) - Unveiling LLM Mechanisms Through Neural ODEs and Control Theory [4.084134914321567]
This paper proposes a framework combining Neural Ordinary Differential Equations (Neural ODEs) and robust control theory to enhance the interpretability and control of large language models (LLMs)<n> Experimental results show that the integration of Neural ODEs and control theory significantly improves output consistency and model interpretability, advancing the development of explainable AI technologies.
arXiv Detail & Related papers (2024-06-23T22:56:34Z) - Dynamic and Adaptive Feature Generation with LLM [10.142660254703225]
We propose a dynamic and adaptive feature generation method that enhances the interpretability of the feature generation process.
Our approach broadens the applicability across various data types and tasks and draws advantages over strategic flexibility.
arXiv Detail & Related papers (2024-06-04T20:32:14Z) - Large Language Model-Based Interpretable Machine Learning Control in Building Energy Systems [3.0309252269809264]
This paper investigates and explores Interpretable Machine Learning (IML), a branch of Machine Learning (ML) that enhances transparency and understanding of models and their inferences.
We develop an innovative framework that combines the principles of Shapley values and the in-context learning feature of Large Language Models (LLMs)
The paper presents a case study to demonstrate the feasibility of the developed IML framework for model predictive control-based precooling under demand response events in a virtual testbed.
arXiv Detail & Related papers (2024-02-14T21:19:33Z) - Learning minimal representations of stochastic processes with
variational autoencoders [52.99137594502433]
We introduce an unsupervised machine learning approach to determine the minimal set of parameters required to describe a process.
Our approach enables for the autonomous discovery of unknown parameters describing processes.
arXiv Detail & Related papers (2023-07-21T14:25:06Z) - Formal Controller Synthesis for Markov Jump Linear Systems with
Uncertain Dynamics [64.72260320446158]
We propose a method for synthesising controllers for Markov jump linear systems.
Our method is based on a finite-state abstraction that captures both the discrete (mode-jumping) and continuous (stochastic linear) behaviour of the MJLS.
We apply our method to multiple realistic benchmark problems, in particular, a temperature control and an aerial vehicle delivery problem.
arXiv Detail & Related papers (2022-12-01T17:36:30Z) - Active Learning of Discrete-Time Dynamics for Uncertainty-Aware Model Predictive Control [46.81433026280051]
We present a self-supervised learning approach that actively models the dynamics of nonlinear robotic systems.
Our approach showcases high resilience and generalization capabilities by consistently adapting to unseen flight conditions.
arXiv Detail & Related papers (2022-10-23T00:45:05Z) - Reduced Order Dynamical Models For Complex Dynamics in Manufacturing and
Natural Systems Using Machine Learning [0.0]
This work develops reduced-order models of manufacturing and natural systems using a machine learning (ML) approach.
The approach is demonstrated on an entire soybean-oil to soybean-diesel process plant and a lake system.
Results show that the method identifies a high accuracy linear ODE models for the process plant, reflective of underlying linear stoichiometric mechanisms and mass balance driving the dynamics.
arXiv Detail & Related papers (2021-10-15T18:44:27Z) - Quantum-tailored machine-learning characterization of a superconducting
qubit [50.591267188664666]
We develop an approach to characterize the dynamics of a quantum device and learn device parameters.
This approach outperforms physics-agnostic recurrent neural networks trained on numerically generated and experimental data.
This demonstration shows how leveraging domain knowledge improves the accuracy and efficiency of this characterization task.
arXiv Detail & Related papers (2021-06-24T15:58:57Z) - Machine Learning based Indicators to Enhance Process Monitoring by
Pattern Recognition [0.4893345190925177]
We propose a novel framework for machine learning based indicators combining pattern type and intensity.
In a case-study from semiconductor industry, our framework goes beyond conventional process control and achieves high quality experimental results.
arXiv Detail & Related papers (2021-03-24T10:13:20Z) - Controlling nonlinear dynamical systems into arbitrary states using
machine learning [77.34726150561087]
We propose a novel and fully data driven control scheme which relies on machine learning (ML)
Exploiting recently developed ML-based prediction capabilities of complex systems, we demonstrate that nonlinear systems can be forced to stay in arbitrary dynamical target states coming from any initial state.
Having this highly flexible control scheme with little demands on the amount of required data on hand, we briefly discuss possible applications that range from engineering to medicine.
arXiv Detail & Related papers (2021-02-23T16:58:26Z) - Technology Readiness Levels for Machine Learning Systems [107.56979560568232]
Development and deployment of machine learning systems can be executed easily with modern tools, but the process is typically rushed and means-to-an-end.
We have developed a proven systems engineering approach for machine learning development and deployment.
Our "Machine Learning Technology Readiness Levels" framework defines a principled process to ensure robust, reliable, and responsible systems.
arXiv Detail & Related papers (2021-01-11T15:54:48Z) - Technology Readiness Levels for AI & ML [79.22051549519989]
Development of machine learning systems can be executed easily with modern tools, but the process is typically rushed and means-to-an-end.
Engineering systems follow well-defined processes and testing standards to streamline development for high-quality, reliable results.
We propose a proven systems engineering approach for machine learning development and deployment.
arXiv Detail & Related papers (2020-06-21T17:14:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.