論文の概要: Inference for max-linear Bayesian networks with noise
- arxiv url: http://arxiv.org/abs/2505.00229v1
- Date: Thu, 01 May 2025 00:31:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:55.192788
- Title: Inference for max-linear Bayesian networks with noise
- Title(参考訳): 雑音を伴う最大線形ベイズネットワークの推論
- Authors: Mark Adams, Kamillo Ferry, Ruriko Yoshida,
- Abstract要約: 有向非巡回グラフ(DAG)における各エッジのパラメータ推定器が正規分布であることを示す。
この論文は、期待と二次最適化の実験で終わりを告げる。
- 参考スコア(独自算出の注目度): 0.49157446832511503
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Max-Linear Bayesian Networks (MLBNs) provide a powerful framework for causal inference in extreme-value settings; we consider MLBNs with noise parameters with a given topology in terms of the max-plus algebra by taking its logarithm. Then, we show that an estimator of a parameter for each edge in a directed acyclic graph (DAG) is distributed normally. We end this paper with computational experiments with the expectation and maximization (EM) algorithm and quadratic optimization.
- Abstract(参考訳): Max-Linear Bayesian Networks (MLBN) は極値設定における因果推論のための強力なフレームワークを提供する。
次に,有向非巡回グラフ(DAG)における各エッジのパラメータ推定器が正規分布であることを示す。
本稿では,予測と最大化(EM)アルゴリズムと2次最適化を用いた計算実験を終了する。
関連論文リスト
- Fundamental limits of Non-Linear Low-Rank Matrix Estimation [18.455890316339595]
ベイズ最適性能は、有効前のガウスモデルによって特徴づけられる。
信号を正確に再構成するためには、Nfrac 12 (1-1/k_F)$として増加する信号対雑音比が必要であり、$k_F$は関数の最初のゼロでないフィッシャー情報係数である。
論文 参考訳(メタデータ) (2024-03-07T05:26:52Z) - Approximating a RUM from Distributions on k-Slates [88.32814292632675]
与えられた分布を平均で最もよく近似するRUMを求める一般化時間アルゴリズムを求める。
我々の理論的結果は、実世界のデータセットに効果的でスケール可能なものを得るという、実践的な結果も得られます。
論文 参考訳(メタデータ) (2023-05-22T17:43:34Z) - Generalization Error Bounds for Noisy, Iterative Algorithms via Maximal
Leakage [24.40306100502023]
我々は,雑音学習アルゴリズムのクラスにおける一般化挙動を解析するために,情報理論の枠組みを採用する。
更新関数の仮定が雑音の最適選択にどのように影響するかを示す。
論文 参考訳(メタデータ) (2023-02-28T12:13:57Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
疎高次元線形回帰に対する計算効率が高く強力なベイズ的手法を提案する。
パラメータに関する最小の事前仮定は、プラグイン経験的ベイズ推定(英語版)を用いて用いられる。
提案手法はRパッケージプローブに実装されている。
論文 参考訳(メタデータ) (2022-09-16T19:15:50Z) - Beyond EM Algorithm on Over-specified Two-Component Location-Scale
Gaussian Mixtures [29.26015093627193]
負の対数様関数の曲率を効率的に探索するために,指数位置更新法(ELU)アルゴリズムを開発した。
ELUアルゴリズムは、対数的な反復数の後、モデルの最終的な統計的半径に収束することを示した。
論文 参考訳(メタデータ) (2022-05-23T06:49:55Z) - Optimizing Information-theoretical Generalization Bounds via Anisotropic
Noise in SGLD [73.55632827932101]
SGLDにおけるノイズ構造を操作することにより,情報理論の一般化を最適化する。
低経験的リスクを保証するために制約を課すことで、最適なノイズ共分散が期待される勾配共分散の平方根であることを証明する。
論文 参考訳(メタデータ) (2021-10-26T15:02:27Z) - Predicting parameters for the Quantum Approximate Optimization Algorithm
for MAX-CUT from the infinite-size limit [0.05076419064097732]
推定次数$d$のランダムエルドス・レーニグラフに適用したMAX-CUT上でのQAOAの性能を評価するための明示的なアルゴリズムを提案する。
この解析により、エルドス・レーニグラフ上のMAX-CUTのQAOAパラメータとシェリントン・カークパトリックモデルとの明示的なマッピングが得られる。
論文 参考訳(メタデータ) (2021-10-20T17:58:53Z) - Parameters Fixing Strategy for Quantum Approximate Optimization
Algorithm [0.0]
そこで本稿では,QAOAをパラメータとして初期化することで,回路深度が大きければ平均で高い近似比を与える手法を提案する。
我々は3つの正則グラフやエルド・オス=ルネニグラフのようなグラフのある種のクラスにおけるマックスカット問題に対する我々の戦略をテストする。
論文 参考訳(メタデータ) (2021-08-11T15:44:16Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
モローエンベロープの勾配のノルムに対して$mathcaltilde O(t-1/4)$収束率を証明する。
我々の分析では、最小バッチサイズが1ドル、定数が1位と2位のモーメントパラメータが1ドル、そしておそらくスムーズな最適化ドメインで機能する。
論文 参考訳(メタデータ) (2020-06-11T17:43:19Z) - Convex Geometry and Duality of Over-parameterized Neural Networks [70.15611146583068]
有限幅2層ReLUネットワークの解析のための凸解析手法を開発した。
正規化学習問題に対する最適解が凸集合の極点として特徴づけられることを示す。
高次元では、トレーニング問題は無限に多くの制約を持つ有限次元凸問題としてキャストできることが示される。
論文 参考訳(メタデータ) (2020-02-25T23:05:33Z) - Support recovery and sup-norm convergence rates for sparse pivotal
estimation [79.13844065776928]
高次元スパース回帰では、ピボット推定器は最適な正規化パラメータがノイズレベルに依存しない推定器である。
非滑らかで滑らかな単一タスクとマルチタスク正方形ラッソ型推定器に対するミニマックス超ノルム収束率を示す。
論文 参考訳(メタデータ) (2020-01-15T16:11:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。