論文の概要: From GNNs to Trees: Multi-Granular Interpretability for Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2505.00364v1
- Date: Thu, 01 May 2025 07:22:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:55.25627
- Title: From GNNs to Trees: Multi-Granular Interpretability for Graph Neural Networks
- Title(参考訳): GNNから木へ:グラフニューラルネットワークの多角的解釈可能性
- Authors: Jie Yang, Yuwen Wang, Kaixuan Chen, Tongya Zheng, Yihe Zhou, Zhenbang Xiao, Ji Cao, Mingli Song, Shunyu Liu,
- Abstract要約: 解釈可能なグラフニューラルネットワーク(GNN)は、モデル予測の背後にある理由を明らかにすることを目的としている。
既存の部分グラフベースの解釈可能なメソッドは、局所構造上のオーバーエンハンシスに悩まされる。
グラフ分類のための新しいツリーライクな解釈フレームワーク(TIF)を提案する。
- 参考スコア(独自算出の注目度): 29.032055397116217
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Interpretable Graph Neural Networks (GNNs) aim to reveal the underlying reasoning behind model predictions, attributing their decisions to specific subgraphs that are informative. However, existing subgraph-based interpretable methods suffer from an overemphasis on local structure, potentially overlooking long-range dependencies within the entire graphs. Although recent efforts that rely on graph coarsening have proven beneficial for global interpretability, they inevitably reduce the graphs to a fixed granularity. Such an inflexible way can only capture graph connectivity at a specific level, whereas real-world graph tasks often exhibit relationships at varying granularities (e.g., relevant interactions in proteins span from functional groups, to amino acids, and up to protein domains). In this paper, we introduce a novel Tree-like Interpretable Framework (TIF) for graph classification, where plain GNNs are transformed into hierarchical trees, with each level featuring coarsened graphs of different granularity as tree nodes. Specifically, TIF iteratively adopts a graph coarsening module to compress original graphs (i.e., root nodes of trees) into increasingly coarser ones (i.e., child nodes of trees), while preserving diversity among tree nodes within different branches through a dedicated graph perturbation module. Finally, we propose an adaptive routing module to identify the most informative root-to-leaf paths, providing not only the final prediction but also the multi-granular interpretability for the decision-making process. Extensive experiments on the graph classification benchmarks with both synthetic and real-world datasets demonstrate the superiority of TIF in interpretability, while also delivering a competitive prediction performance akin to the state-of-the-art counterparts.
- Abstract(参考訳): Interpretable Graph Neural Networks (GNN)は、モデル予測の背後にある基本的な理由を明らかにすることを目的としており、その決定を情報のある特定のサブグラフに導く。
しかし、既存の部分グラフベースの解釈可能な手法は、局所構造に対する過剰な強調に悩まされ、グラフ全体の長距離依存性を見落としている可能性がある。
グラフ粗化に依存する最近の研究は、グローバルな解釈可能性に有益であることが証明されているが、必然的にグラフを固定された粒度に還元する。
このような非フレキシブルな方法では、特定のレベルでのみグラフ接続をキャプチャできるのに対し、現実のグラフタスクは、様々な粒度(例えば、官能基からアミノ酸、タンパク質ドメインまで、タンパク質間の関連する相互作用)で関係を示すことが多い。
本稿では,木ノードとして異なる粒度の粗いグラフを特徴とし,GNNを階層木に変換する,グラフ分類のための新しいツリー状解釈フレームワーク(TIF)を提案する。
具体的には、TIFはグラフ粗化モジュールを反復的に採用して、元のグラフ(木の根ノード)をより粗いもの(木の子ノード)に圧縮すると同時に、専用のグラフ摂動モジュールを通じて異なるブランチ内のツリーノード間の多様性を保っている。
最後に,最も情報性の高いルート・ツー・リーフ経路を同定し,最終的な予測だけでなく,決定プロセスの多粒性解釈性も提供する適応的ルーティングモジュールを提案する。
合成データセットと実世界のデータセットの両方を用いたグラフ分類ベンチマークの大規模な実験は、解釈可能性におけるTIFの優位性を実証すると同時に、最先端のデータセットと同様の競合予測性能を提供する。
関連論文リスト
- Revisiting Graph Neural Networks on Graph-level Tasks: Comprehensive Experiments, Analysis, and Improvements [54.006506479865344]
グラフレベルグラフニューラルネットワーク(GNN)のための統一評価フレームワークを提案する。
このフレームワークは、さまざまなデータセットにわたるGNNを評価するための標準化された設定を提供する。
また,表現性の向上と一般化機能を備えた新しいGNNモデルを提案する。
論文 参考訳(メタデータ) (2025-01-01T08:48:53Z) - Unveiling Global Interactive Patterns across Graphs: Towards Interpretable Graph Neural Networks [31.29616732552006]
グラフニューラルネットワーク(GNN)は、グラフマイニングの著名なフレームワークとして登場した。
本稿では,グラフ分類に内在的に解釈可能な新しい手法を提案する。
グローバル対話パターン(GIP)学習は、学習可能なグローバル対話パターンを導入し、決定を明示的に解釈する。
論文 参考訳(メタデータ) (2024-07-02T06:31:13Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
本稿では,任意のノード間のノード信号を効率的に伝搬する全ペアメッセージパッシング方式を提案する。
効率的な計算は、カーナライズされたGumbel-Softmax演算子によって実現される。
グラフ上のノード分類を含む様々なタスクにおいて,本手法の有望な有効性を示す実験を行った。
論文 参考訳(メタデータ) (2023-06-14T09:21:15Z) - TREE-G: Decision Trees Contesting Graph Neural Networks [33.364191419692105]
TREE-Gは、グラフデータに特化した新しい分割関数を導入することで、標準的な決定木を変更する。
グラフニューラルネットワーク(GNN)やグラフカーネル(Graph Kernels)などのグラフ学習アルゴリズムでは,TREE-Gが他のツリーベースモデルより一貫して優れていることが示されています。
論文 参考訳(メタデータ) (2022-07-06T15:53:17Z) - Discovering the Representation Bottleneck of Graph Neural Networks from
Multi-order Interactions [51.597480162777074]
グラフニューラルネットワーク(GNN)は、ノード機能を伝搬し、インタラクションを構築するためにメッセージパッシングパラダイムに依存している。
最近の研究は、異なるグラフ学習タスクはノード間の異なる範囲の相互作用を必要とすることを指摘している。
科学領域における2つの共通グラフ構築法、すなわち、emphK-nearest neighbor(KNN)グラフとemphfully-connected(FC)グラフについて検討する。
論文 参考訳(メタデータ) (2022-05-15T11:38:14Z) - Neighborhood Random Walk Graph Sampling for Regularized Bayesian Graph
Convolutional Neural Networks [0.6236890292833384]
本稿では,近隣ランダムウォークサンプリング(BGCN-NRWS)を用いたベイジアングラフ畳み込みネットワーク(Bayesian Graph Convolutional Network)を提案する。
BGCN-NRWSは、グラフ構造を利用したマルコフ・チェイン・モンテカルロ(MCMC)に基づくグラフサンプリングアルゴリズムを使用し、変分推論層を用いてオーバーフィッティングを低減し、半教師付きノード分類における最先端と比較して一貫して競合する分類結果を得る。
論文 参考訳(メタデータ) (2021-12-14T20:58:27Z) - Explicit Pairwise Factorized Graph Neural Network for Semi-Supervised
Node Classification [59.06717774425588]
本稿では,グラフ全体を部分的に観測されたマルコフ確率場としてモデル化するEPFGNN(Explicit Pairwise Factorized Graph Neural Network)を提案する。
出力-出力関係をモデル化するための明示的なペアワイズ要素を含み、入力-出力関係をモデル化するためにGNNバックボーンを使用する。
本研究では,グラフ上での半教師付きノード分類の性能を効果的に向上できることを示す。
論文 参考訳(メタデータ) (2021-07-27T19:47:53Z) - Non-isomorphic Inter-modality Graph Alignment and Synthesis for Holistic
Brain Mapping [1.433758865948252]
そこで本研究では,非同型グラフ(IMANGraphNet)フレームワークのモダリティ間整合性について提案し,対象グラフのモダリティを所定のモダリティに基づいて推定する。
私たちの3つのコアコントリビューションは、(i)新しいグラフ生成逆数ネットワーク(gGAN)に基づいて、ソースグラフ(例えば、形態学)からターゲットグラフ(例えば、関数)を予測することである。
形態素グラフからの関数予測に関する包括的実験により,IMANGraphNetの変形特性と比較した性能が示された。
論文 参考訳(メタデータ) (2021-06-30T08:59:55Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
本稿では,AGE という逆グラフ埋め込みのための頑健なフレームワークを提案する。
AGEは、暗黙の分布から強化された負のサンプルとして偽の隣接ノードを生成する。
本フレームワークでは,3種類のグラフデータを扱う3つのモデルを提案する。
論文 参考訳(メタデータ) (2021-05-22T07:05:48Z) - Neural Trees for Learning on Graphs [19.05038106825347]
グラフニューラルネットワーク(GNN)は、グラフを学習するための柔軟で強力なアプローチとして登場した。
我々はニューラルツリーという新しいGNNアーキテクチャを提案する。
神経木アーキテクチャは無向グラフ上の任意の滑らかな確率分布関数を近似できることを示す。
論文 参考訳(メタデータ) (2021-05-15T17:08:20Z) - Multilevel Graph Matching Networks for Deep Graph Similarity Learning [79.3213351477689]
グラフ構造オブジェクト間のグラフ類似性を計算するためのマルチレベルグラフマッチングネットワーク(MGMN)フレームワークを提案する。
標準ベンチマークデータセットの欠如を補うため、グラフグラフ分類とグラフグラフ回帰タスクの両方のためのデータセットセットを作成し、収集した。
総合的な実験により、MGMNはグラフグラフ分類とグラフグラフ回帰タスクの両方において、最先端のベースラインモデルより一貫して優れていることが示された。
論文 参考訳(メタデータ) (2020-07-08T19:48:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。