ParkDiffusion: Heterogeneous Multi-Agent Multi-Modal Trajectory Prediction for Automated Parking using Diffusion Models
- URL: http://arxiv.org/abs/2505.00586v1
- Date: Thu, 01 May 2025 15:16:59 GMT
- Title: ParkDiffusion: Heterogeneous Multi-Agent Multi-Modal Trajectory Prediction for Automated Parking using Diffusion Models
- Authors: Jiarong Wei, Niclas Vödisch, Anna Rehr, Christian Feist, Abhinav Valada,
- Abstract summary: ParkDiffusion is a novel approach that predicts the trajectories of both vehicles and pedestrians in automated parking scenarios.<n>ParkDiffusion employs diffusion models to capture the inherent uncertainty and multi-modality of future trajectories.<n>We evaluate ParkDiffusion on the Dragon Lake Parking dataset and the Intersections Drone dataset.
- Score: 6.58562706945347
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automated parking is a critical feature of Advanced Driver Assistance Systems (ADAS), where accurate trajectory prediction is essential to bridge perception and planning modules. Despite its significance, research in this domain remains relatively limited, with most existing studies concentrating on single-modal trajectory prediction of vehicles. In this work, we propose ParkDiffusion, a novel approach that predicts the trajectories of both vehicles and pedestrians in automated parking scenarios. ParkDiffusion employs diffusion models to capture the inherent uncertainty and multi-modality of future trajectories, incorporating several key innovations. First, we propose a dual map encoder that processes soft semantic cues and hard geometric constraints using a two-step cross-attention mechanism. Second, we introduce an adaptive agent type embedding module, which dynamically conditions the prediction process on the distinct characteristics of vehicles and pedestrians. Third, to ensure kinematic feasibility, our model outputs control signals that are subsequently used within a kinematic framework to generate physically feasible trajectories. We evaluate ParkDiffusion on the Dragon Lake Parking (DLP) dataset and the Intersections Drone (inD) dataset. Our work establishes a new baseline for heterogeneous trajectory prediction in parking scenarios, outperforming existing methods by a considerable margin.
Related papers
- TransParking: A Dual-Decoder Transformer Framework with Soft Localization for End-to-End Automatic Parking [2.209921757303168]
We present a vision-based transformer model for end-to-end automatic parking, trained using expert trajectories.<n> Experimental results demonstrate that the various errors of our model have decreased by approximately 50%.
arXiv Detail & Related papers (2025-03-08T05:41:24Z) - DiFSD: Ego-Centric Fully Sparse Paradigm with Uncertainty Denoising and Iterative Refinement for Efficient End-to-End Self-Driving [55.53171248839489]
We propose an ego-centric fully sparse paradigm, named DiFSD, for end-to-end self-driving.<n>Specifically, DiFSD mainly consists of sparse perception, hierarchical interaction and iterative motion planner.<n>Experiments conducted on nuScenes and Bench2Drive datasets demonstrate the superior planning performance and great efficiency of DiFSD.
arXiv Detail & Related papers (2024-09-15T15:55:24Z) - JRDB-Traj: A Dataset and Benchmark for Trajectory Forecasting in Crowds [79.00975648564483]
Trajectory forecasting models, employed in fields such as robotics, autonomous vehicles, and navigation, face challenges in real-world scenarios.
This dataset provides comprehensive data, including the locations of all agents, scene images, and point clouds, all from the robot's perspective.
The objective is to predict the future positions of agents relative to the robot using raw sensory input data.
arXiv Detail & Related papers (2023-11-05T18:59:31Z) - A Novel Temporal Multi-Gate Mixture-of-Experts Approach for Vehicle
Trajectory and Driving Intention Prediction [0.0]
Accurate Vehicle Trajectory Prediction is critical for automated vehicles and advanced driver assistance systems.
There is a significant correlation between driving intentions and vehicle motion.
We propose a novel Temporal Multi-Gate Mixture-of-Experts model for simultaneously predicting the vehicle trajectory and driving intention.
arXiv Detail & Related papers (2023-08-01T13:26:59Z) - An End-to-End Vehicle Trajcetory Prediction Framework [3.7311680121118345]
An accurate prediction of a future trajectory does not just rely on the previous trajectory, but also a simulation of the complex interactions between other vehicles nearby.
Most state-of-the-art networks built to tackle the problem assume readily available past trajectory points.
We propose a novel end-to-end architecture that takes raw video inputs and outputs future trajectory predictions.
arXiv Detail & Related papers (2023-04-19T15:42:03Z) - Decentralized Vehicle Coordination: The Berkeley DeepDrive Drone Dataset and Consensus-Based Models [76.32775745488073]
We present a novel dataset and modeling framework designed to study motion planning in understructured environments.<n>We demonstrate that a consensus-based modeling approach can effectively explain the emergence of priority orders observed in our dataset.
arXiv Detail & Related papers (2022-09-19T05:06:57Z) - Divide-and-Conquer for Lane-Aware Diverse Trajectory Prediction [71.97877759413272]
Trajectory prediction is a safety-critical tool for autonomous vehicles to plan and execute actions.
Recent methods have achieved strong performances using Multi-Choice Learning objectives like winner-takes-all (WTA) or best-of-many.
Our work addresses two key challenges in trajectory prediction, learning outputs, and better predictions by imposing constraints using driving knowledge.
arXiv Detail & Related papers (2021-04-16T17:58:56Z) - Spatio-Temporal Graph Dual-Attention Network for Multi-Agent Prediction
and Tracking [23.608125748229174]
We propose a generic generative neural system for multi-agent trajectory prediction involving heterogeneous agents.
The proposed system is evaluated on three public benchmark datasets for trajectory prediction.
arXiv Detail & Related papers (2021-02-18T02:25:35Z) - SMART: Simultaneous Multi-Agent Recurrent Trajectory Prediction [72.37440317774556]
We propose advances that address two key challenges in future trajectory prediction.
multimodality in both training data and predictions and constant time inference regardless of number of agents.
arXiv Detail & Related papers (2020-07-26T08:17:10Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
Roads have well defined geometries, topologies, and traffic rules.
In this paper we propose to incorporate structured priors as a loss function.
We demonstrate the effectiveness of our approach on real-world self-driving datasets.
arXiv Detail & Related papers (2020-06-04T03:56:11Z) - ParkPredict: Motion and Intent Prediction of Vehicles in Parking Lots [65.33650222396078]
We develop a parking lot environment and collect a dataset of human parking maneuvers.
We compare a multi-modal Long Short-Term Memory (LSTM) prediction model and a Convolution Neural Network LSTM (CNN-LSTM) to a physics-based Extended Kalman Filter (EKF) baseline.
Our results show that 1) intent can be estimated well (roughly 85% top-1 accuracy and nearly 100% top-3 accuracy with the LSTM and CNN-LSTM model); 2) knowledge of the human driver's intended parking spot has a major impact on predicting parking trajectory; and 3) the semantic representation of the environment
arXiv Detail & Related papers (2020-04-21T20:46:32Z) - A Multi-Modal States based Vehicle Descriptor and Dilated Convolutional
Social Pooling for Vehicle Trajectory Prediction [3.131740922192114]
We propose a vehicle-descriptor based LSTM model with the dilated convolutional social pooling (VD+DCS-LSTM) to cope with the above issues.
Each vehicle's multi-modal state information is employed as our model's input.
The validity of the overall model was verified over the NGSIM US-101 and I-80 datasets.
arXiv Detail & Related papers (2020-03-07T01:23:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.