A Novel Temporal Multi-Gate Mixture-of-Experts Approach for Vehicle
Trajectory and Driving Intention Prediction
- URL: http://arxiv.org/abs/2308.00533v1
- Date: Tue, 1 Aug 2023 13:26:59 GMT
- Title: A Novel Temporal Multi-Gate Mixture-of-Experts Approach for Vehicle
Trajectory and Driving Intention Prediction
- Authors: Renteng Yuan, Mohamed Abdel-Aty, Qiaojun Xiang, Zijin Wang, Ou Zheng
- Abstract summary: Accurate Vehicle Trajectory Prediction is critical for automated vehicles and advanced driver assistance systems.
There is a significant correlation between driving intentions and vehicle motion.
We propose a novel Temporal Multi-Gate Mixture-of-Experts model for simultaneously predicting the vehicle trajectory and driving intention.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate Vehicle Trajectory Prediction is critical for automated vehicles and
advanced driver assistance systems. Vehicle trajectory prediction consists of
two essential tasks, i.e., longitudinal position prediction and lateral
position prediction. There is a significant correlation between driving
intentions and vehicle motion. In existing work, the three tasks are often
conducted separately without considering the relationships between the
longitudinal position, lateral position, and driving intention. In this paper,
we propose a novel Temporal Multi-Gate Mixture-of-Experts (TMMOE) model for
simultaneously predicting the vehicle trajectory and driving intention. The
proposed model consists of three layers: a shared layer, an expert layer, and a
fully connected layer. In the model, the shared layer utilizes Temporal
Convolutional Networks (TCN) to extract temporal features. Then the expert
layer is built to identify different information according to the three tasks.
Moreover, the fully connected layer is used to integrate and export prediction
results. To achieve better performance, uncertainty algorithm is used to
construct the multi-task loss function. Finally, the publicly available CitySim
dataset validates the TMMOE model, demonstrating superior performance compared
to the LSTM model, achieving the highest classification and regression results.
Keywords: Vehicle trajectory prediction, driving intentions Classification,
Multi-task
Related papers
- OPUS: Occupancy Prediction Using a Sparse Set [64.60854562502523]
We present a framework to simultaneously predict occupied locations and classes using a set of learnable queries.
OPUS incorporates a suite of non-trivial strategies to enhance model performance.
Our lightest model achieves superior RayIoU on the Occ3D-nuScenes dataset at near 2x FPS, while our heaviest model surpasses previous best results by 6.1 RayIoU.
arXiv Detail & Related papers (2024-09-14T07:44:22Z) - Multi-scale Temporal Fusion Transformer for Incomplete Vehicle Trajectory Prediction [23.72022120344089]
Motion prediction plays an essential role in autonomous driving systems.
We propose a novel end-to-end framework for incomplete vehicle trajectory prediction.
We evaluate the proposed model on four datasets derived from highway and urban traffic scenarios.
arXiv Detail & Related papers (2024-09-02T02:36:18Z) - StreamMOTP: Streaming and Unified Framework for Joint 3D Multi-Object Tracking and Trajectory Prediction [22.29257945966914]
We propose a streaming and unified framework for joint 3D Multi-Object Tracking and trajectory Prediction (StreamMOTP)
We construct the model in a streaming manner and exploit a memory bank to preserve and leverage the long-term latent features for tracked objects more effectively.
We also improve the quality and consistency of predicted trajectories with a dual-stream predictor.
arXiv Detail & Related papers (2024-06-28T11:35:35Z) - Deciphering Movement: Unified Trajectory Generation Model for Multi-Agent [53.637837706712794]
We propose a Unified Trajectory Generation model, UniTraj, that processes arbitrary trajectories as masked inputs.
Specifically, we introduce a Ghost Spatial Masking (GSM) module embedded within a Transformer encoder for spatial feature extraction.
We benchmark three practical sports game datasets, Basketball-U, Football-U, and Soccer-U, for evaluation.
arXiv Detail & Related papers (2024-05-27T22:15:23Z) - Trajeglish: Traffic Modeling as Next-Token Prediction [67.28197954427638]
A longstanding challenge for self-driving development is simulating dynamic driving scenarios seeded from recorded driving logs.
We apply tools from discrete sequence modeling to model how vehicles, pedestrians and cyclists interact in driving scenarios.
Our model tops the Sim Agents Benchmark, surpassing prior work along the realism meta metric by 3.3% and along the interaction metric by 9.9%.
arXiv Detail & Related papers (2023-12-07T18:53:27Z) - Fully End-to-end Autonomous Driving with Semantic Depth Cloud Mapping
and Multi-Agent [2.512827436728378]
We propose a novel deep learning model trained with end-to-end and multi-task learning manners to perform both perception and control tasks simultaneously.
The model is evaluated on CARLA simulator with various scenarios made of normal-adversarial situations and different weathers to mimic real-world conditions.
arXiv Detail & Related papers (2022-04-12T03:57:01Z) - Spatio-Temporal Graph Dual-Attention Network for Multi-Agent Prediction
and Tracking [23.608125748229174]
We propose a generic generative neural system for multi-agent trajectory prediction involving heterogeneous agents.
The proposed system is evaluated on three public benchmark datasets for trajectory prediction.
arXiv Detail & Related papers (2021-02-18T02:25:35Z) - IntentNet: Learning to Predict Intention from Raw Sensor Data [86.74403297781039]
In this paper, we develop a one-stage detector and forecaster that exploits both 3D point clouds produced by a LiDAR sensor as well as dynamic maps of the environment.
Our multi-task model achieves better accuracy than the respective separate modules while saving computation, which is critical to reducing reaction time in self-driving applications.
arXiv Detail & Related papers (2021-01-20T00:31:52Z) - SMART: Simultaneous Multi-Agent Recurrent Trajectory Prediction [72.37440317774556]
We propose advances that address two key challenges in future trajectory prediction.
multimodality in both training data and predictions and constant time inference regardless of number of agents.
arXiv Detail & Related papers (2020-07-26T08:17:10Z) - ParkPredict: Motion and Intent Prediction of Vehicles in Parking Lots [65.33650222396078]
We develop a parking lot environment and collect a dataset of human parking maneuvers.
We compare a multi-modal Long Short-Term Memory (LSTM) prediction model and a Convolution Neural Network LSTM (CNN-LSTM) to a physics-based Extended Kalman Filter (EKF) baseline.
Our results show that 1) intent can be estimated well (roughly 85% top-1 accuracy and nearly 100% top-3 accuracy with the LSTM and CNN-LSTM model); 2) knowledge of the human driver's intended parking spot has a major impact on predicting parking trajectory; and 3) the semantic representation of the environment
arXiv Detail & Related papers (2020-04-21T20:46:32Z) - A Multi-Modal States based Vehicle Descriptor and Dilated Convolutional
Social Pooling for Vehicle Trajectory Prediction [3.131740922192114]
We propose a vehicle-descriptor based LSTM model with the dilated convolutional social pooling (VD+DCS-LSTM) to cope with the above issues.
Each vehicle's multi-modal state information is employed as our model's input.
The validity of the overall model was verified over the NGSIM US-101 and I-80 datasets.
arXiv Detail & Related papers (2020-03-07T01:23:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.