論文の概要: Large Language Models Understanding: an Inherent Ambiguity Barrier
- arxiv url: http://arxiv.org/abs/2505.00654v1
- Date: Thu, 01 May 2025 16:55:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:55.377244
- Title: Large Language Models Understanding: an Inherent Ambiguity Barrier
- Title(参考訳): 大きな言語モデルを理解する: 真のあいまいさバリア
- Authors: Daniel N. Nissani,
- Abstract要約: 世界を理解する能力に関して、LLM(Large Language Models)の出現以来、活発に議論が続いている。
議論と反論は、思考実験、LLMと人間との逸話会話、統計的言語分析、哲学的考察などに基づいて提案されている。
本稿では, 思考実験と半形式的考察に基づいて, 内在的あいまいさの障壁に繋がる反論を提示する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A lively ongoing debate is taking place, since the extraordinary emergence of Large Language Models (LLMs) with regards to their capability to understand the world and capture the meaning of the dialogues in which they are involved. Arguments and counter-arguments have been proposed based upon thought experiments, anecdotal conversations between LLMs and humans, statistical linguistic analysis, philosophical considerations, and more. In this brief paper we present a counter-argument based upon a thought experiment and semi-formal considerations leading to an inherent ambiguity barrier which prevents LLMs from having any understanding of what their amazingly fluent dialogues mean.
- Abstract(参考訳): 世界を理解し、関係する対話の意味を捉える能力に関して、LLM(Large Language Models)が異常に出現し、活発に議論が続いている。
議論と反論は、思考実験、LLMと人間との逸話会話、統計的言語分析、哲学的考察などに基づいて提案されている。
本稿では, 思考実験と半形式的考察に基づいて, LLMが驚くほど流動的な対話の意味を理解できないよう, あいまいさの障壁に繋がる反論を提示する。
関連論文リスト
- Contrastive Speaker-Aware Learning for Multi-party Dialogue Generation with LLMs [4.691083532629246]
マルチパーティ対話生成は、複数の話者の複雑な相互作用と会話スレッド間の相互作用によって大きな課題を呈する。
本稿では,事前学習されたLarge Language Models (LLM) を利用した新しい生成モデルである Speaker-Attentive LLM (SA-LLM) と,これらの課題に対処するための話者認識型コントラスト学習戦略を提案する。
SA-LLMは、明示的な関係アノテーションなしで文脈的コヒーレンスと話者の役割を暗黙的に学習する、話者対応の入力符号化と対照的な学習目的を取り入れている。
論文 参考訳(メタデータ) (2025-03-11T19:28:12Z) - Understanding Epistemic Language with a Language-augmented Bayesian Theory of Mind [47.001163099930494]
ベイジアン推論に基づく認識的言語解釈モデルを導入する。
実験では,エージェントが迷路をナビゲートして,目標達成に必要な箱に隠されたキーを見つけ,エージェントの信念を判断する。
論文 参考訳(メタデータ) (2024-08-21T22:29:56Z) - What if...?: Thinking Counterfactual Keywords Helps to Mitigate Hallucination in Large Multi-modal Models [50.97705264224828]
大規模マルチモーダルモデルに反現実的思考を組み込む新しい手法である反現実的インセプションを提案する。
我々は、より広い文脈のシーン理解にまたがる応答をモデルが関与し、生成することを目指している。
オープンソースモデルとプロプライエタリモデルの両方を含む様々なLMMの包括的分析は、反事実的思考が幻覚を著しく減少させることを裏付ける。
論文 参考訳(メタデータ) (2024-03-20T11:27:20Z) - Sibyl: Empowering Empathetic Dialogue Generation in Large Language Models via Sensible and Visionary Commonsense Inference [40.96005200292604]
感性とビジョンコモンセンス知識(Sibyl)という革新的な枠組みを提示する。
それは、より共感的な反応を引き出すことを目的として、すぐに続く対話に集中するように設計されている。
実験結果から,LLMにコモンセンス知識を習得するためのパラダイムを取り入れることで,その応答の質を総合的に向上することが示された。
論文 参考訳(メタデータ) (2023-11-26T14:35:23Z) - DDCoT: Duty-Distinct Chain-of-Thought Prompting for Multimodal Reasoning
in Language Models [28.712359821231182]
大規模言語モデル(LLM)は、思考の連鎖(CoT)を利用して人間の思考を模倣することによって、言語モダリティの多段階的推論において顕著な進歩を遂げた。
これらの進歩をマルチモーダルな文脈に移すことは、労働集約的アノテーションの非現実的な必要性に限らず、より高い課題をもたらす。
本研究では,複数モーダリティを推論に組み込んだDDCoTプロンプトを提案する。
論文 参考訳(メタデータ) (2023-10-25T08:03:10Z) - Encouraging Divergent Thinking in Large Language Models through Multi-Agent Debate [85.3444184685235]
複数のエージェントが"tit for tat"の状態で議論を表現するマルチエージェント議論(MAD)フレームワークを提案し、審査員が議論プロセスを管理して最終解を得る。
我々のフレームワークは、深い熟考を必要とするタスクに役立ちそうなLSMにおける散発的思考を奨励する。
論文 参考訳(メタデータ) (2023-05-30T15:25:45Z) - Large Language Models are In-Context Semantic Reasoners rather than
Symbolic Reasoners [75.85554779782048]
大規模言語モデル(LLM)は、近年、自然言語と機械学習コミュニティを興奮させています。
多くの成功を収めたアプリケーションにもかかわらず、そのようなコンテキスト内機能の基盤となるメカニズムはまだ不明である。
本研究では,学習した言語トークンのテクストセマンティクスが推論過程において最も重い処理を行うと仮定する。
論文 参考訳(メタデータ) (2023-05-24T07:33:34Z) - Improving Factuality and Reasoning in Language Models through Multiagent
Debate [95.10641301155232]
複数の言語モデルインスタンスが共通の最終回答に到達するために、複数のラウンドで個別の応答と推論プロセスを提案し、議論する言語応答を改善するための補完的なアプローチを提案する。
以上の結果から,本手法は様々なタスクにおける数学的・戦略的推論を著しく向上させることが示唆された。
我々のアプローチは、既存のブラックボックスモデルに直接適用され、調査するすべてのタスクに対して、同じ手順とプロンプトを使用することができる。
論文 参考訳(メタデータ) (2023-05-23T17:55:11Z) - Prompting and Evaluating Large Language Models for Proactive Dialogues:
Clarification, Target-guided, and Non-collaboration [72.04629217161656]
本研究は, 明瞭化, 目標誘導, 非協調対話の3つの側面に焦点をあてる。
LLMの能動性を高めるために,プロアクティブ・チェーン・オブ・ソート・プロンプト方式を提案する。
論文 参考訳(メタデータ) (2023-05-23T02:49:35Z) - Examining Inter-Consistency of Large Language Models Collaboration: An
In-depth Analysis via Debate [41.949869545423375]
大きな言語モデル(LLM)は、様々なアプリケーションで印象的な機能を示しているが、それでも様々な矛盾問題に直面している。
LLMが効果的に協力して共有目標のコンセンサスを達成するためには,コモンセンス推論に焦点をあてる。
我々の研究は,LLM間の一貫性の理解に寄与し,今後のコラボレーション手法開発の基礎を築いた。
論文 参考訳(メタデータ) (2023-05-19T11:15:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。