Multi-Objective Reinforcement Learning for Water Management
- URL: http://arxiv.org/abs/2505.01094v1
- Date: Fri, 02 May 2025 08:14:01 GMT
- Title: Multi-Objective Reinforcement Learning for Water Management
- Authors: Zuzanna Osika, Roxana Radelescu, Jazmin Zatarain Salazar, Frans Oliehoek, Pradeep K. Murukannaiah,
- Abstract summary: Multi-objective reinforcement learning (MORL) extends classic reinforcement learning to handle multiple objectives simultaneously.<n>We introduce a water resource (Nile river basin) management case study and model it as a MORL environment.<n>We then benchmark existing MORL algorithms on this task.<n>Our results show that specialized water management methods outperform state-of-the-art MORL approaches.
- Score: 0.8163897333839454
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many real-world problems (e.g., resource management, autonomous driving, drug discovery) require optimizing multiple, conflicting objectives. Multi-objective reinforcement learning (MORL) extends classic reinforcement learning to handle multiple objectives simultaneously, yielding a set of policies that capture various trade-offs. However, the MORL field lacks complex, realistic environments and benchmarks. We introduce a water resource (Nile river basin) management case study and model it as a MORL environment. We then benchmark existing MORL algorithms on this task. Our results show that specialized water management methods outperform state-of-the-art MORL approaches, underscoring the scalability challenges MORL algorithms face in real-world scenarios.
Related papers
- PUMA: Layer-Pruned Language Model for Efficient Unified Multimodal Retrieval with Modality-Adaptive Learning [54.73049408950049]
We propose a Layer-Pruned Language Model for Efficient Unified Multimodal Retrieval with Modality-Adaptive Learning.<n>Our approach improves unified multimodal retrieval from both structural and learning perspectives.
arXiv Detail & Related papers (2025-07-10T16:47:25Z) - In Search for Architectures and Loss Functions in Multi-Objective Reinforcement Learning [0.6650227510403052]
Multi-objective reinforcement learning (MORL) is essential for addressing the intricacies of real-world RL problems.
MORL is challenging due to unstable learning dynamics with deep learning-based function approximators.
Our work empirically explores model-free policy learning loss functions and the impact of different architectural choices.
arXiv Detail & Related papers (2024-07-23T19:17:47Z) - Aquatic Navigation: A Challenging Benchmark for Deep Reinforcement Learning [53.3760591018817]
We propose a new benchmarking environment for aquatic navigation using recent advances in the integration between game engines and Deep Reinforcement Learning.
Specifically, we focus on PPO, one of the most widely accepted algorithms, and we propose advanced training techniques.
Our empirical evaluation shows that a well-designed combination of these ingredients can achieve promising results.
arXiv Detail & Related papers (2024-05-30T23:20:23Z) - Demonstration Guided Multi-Objective Reinforcement Learning [2.9845592719739127]
We introduce demonstration-guided multi-objective reinforcement learning (DG-MORL)
This novel approach utilizes prior demonstrations, aligns them with user preferences via corner weight support, and incorporates a self-evolving mechanism to refine suboptimal demonstrations.
Our empirical studies demonstrate DG-MORL's superiority over existing MORL algorithms, establishing its robustness and efficacy.
arXiv Detail & Related papers (2024-04-05T10:19:04Z) - Reparameterized Policy Learning for Multimodal Trajectory Optimization [61.13228961771765]
We investigate the challenge of parametrizing policies for reinforcement learning in high-dimensional continuous action spaces.
We propose a principled framework that models the continuous RL policy as a generative model of optimal trajectories.
We present a practical model-based RL method, which leverages the multimodal policy parameterization and learned world model.
arXiv Detail & Related papers (2023-07-20T09:05:46Z) - Exploration via Planning for Information about the Optimal Trajectory [67.33886176127578]
We develop a method that allows us to plan for exploration while taking the task and the current knowledge into account.
We demonstrate that our method learns strong policies with 2x fewer samples than strong exploration baselines.
arXiv Detail & Related papers (2022-10-06T20:28:55Z) - Dynamic Channel Access via Meta-Reinforcement Learning [0.8223798883838329]
We propose a meta-DRL framework that incorporates the method of Model-Agnostic Meta-Learning (MAML)
We show that only a few gradient descents are required for adapting to different tasks drawn from the same distribution.
arXiv Detail & Related papers (2021-12-24T15:04:43Z) - Multitask Adaptation by Retrospective Exploration with Learned World
Models [77.34726150561087]
We propose a meta-learned addressing model called RAMa that provides training samples for the MBRL agent taken from task-agnostic storage.
The model is trained to maximize the expected agent's performance by selecting promising trajectories solving prior tasks from the storage.
arXiv Detail & Related papers (2021-10-25T20:02:57Z) - Provable Multi-Objective Reinforcement Learning with Generative Models [98.19879408649848]
We study the problem of single policy MORL, which learns an optimal policy given the preference of objectives.
Existing methods require strong assumptions such as exact knowledge of the multi-objective decision process.
We propose a new algorithm called model-based envelop value (EVI) which generalizes the enveloped multi-objective $Q$-learning algorithm.
arXiv Detail & Related papers (2020-11-19T22:35:31Z) - Forgetful Experience Replay in Hierarchical Reinforcement Learning from
Demonstrations [55.41644538483948]
In this paper, we propose a combination of approaches that allow the agent to use low-quality demonstrations in complex vision-based environments.
Our proposed goal-oriented structuring of replay buffer allows the agent to automatically highlight sub-goals for solving complex hierarchical tasks in demonstrations.
The solution based on our algorithm beats all the solutions for the famous MineRL competition and allows the agent to mine a diamond in the Minecraft environment.
arXiv Detail & Related papers (2020-06-17T15:38:40Z) - Ready Policy One: World Building Through Active Learning [35.358315617358976]
We introduce Ready Policy One (RP1), a framework that views Model-Based Reinforcement Learning as an active learning problem.
RP1 achieves this by utilizing a hybrid objective function, which crucially adapts during optimization.
We rigorously evaluate our method on a variety of continuous control tasks, and demonstrate statistically significant gains over existing approaches.
arXiv Detail & Related papers (2020-02-07T09:57:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.