論文の概要: Can Foundation Models Really Segment Tumors? A Benchmarking Odyssey in Lung CT Imaging
- arxiv url: http://arxiv.org/abs/2505.01239v1
- Date: Fri, 02 May 2025 13:04:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-05 17:21:20.028437
- Title: Can Foundation Models Really Segment Tumors? A Benchmarking Odyssey in Lung CT Imaging
- Title(参考訳): ファンデーションモデルが本当に腫瘍を分節できるか? : 肺CT像のベンチマーク
- Authors: Elena Mulero Ayllón, Massimiliano Mantegna, Linlin Shen, Paolo Soda, Valerio Guarrasi, Matteo Tortora,
- Abstract要約: 腫瘍の形態、大きさ、位置の複雑さは、自動セグメンテーションに重大な課題をもたらす。
我々は、U-NetやDeepLabV3のような従来のアーキテクチャ、nnUNetのような自己設定モデル、MedSAMやMedSAM2のような基礎モデルと比較する。
その結果、従来のモデルでは腫瘍の脱線に苦しむ一方で、基礎モデル、特にMedSAM2は精度と計算効率の両方で優れていることがわかった。
- 参考スコア(独自算出の注目度): 25.093744722130594
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Accurate lung tumor segmentation is crucial for improving diagnosis, treatment planning, and patient outcomes in oncology. However, the complexity of tumor morphology, size, and location poses significant challenges for automated segmentation. This study presents a comprehensive benchmarking analysis of deep learning-based segmentation models, comparing traditional architectures such as U-Net and DeepLabV3, self-configuring models like nnUNet, and foundation models like MedSAM, and MedSAM~2. Evaluating performance across two lung tumor segmentation datasets, we assess segmentation accuracy and computational efficiency under various learning paradigms, including few-shot learning and fine-tuning. The results reveal that while traditional models struggle with tumor delineation, foundation models, particularly MedSAM~2, outperform them in both accuracy and computational efficiency. These findings underscore the potential of foundation models for lung tumor segmentation, highlighting their applicability in improving clinical workflows and patient outcomes.
- Abstract(参考訳): 腫瘍の正確な分節化は、腫瘍学における診断、治療計画、および患者の予後を改善するために重要である。
しかし, 腫瘍の形態, サイズ, 位置の複雑さは, 自動セグメンテーションにおいて重要な課題となっている。
本研究では,U-Net や DeepLabV3 などの従来のアーキテクチャ,nnUNet などの自己構成モデル,MedSAM や MedSAM~2 といった基礎モデルを比較し,ディープラーニングに基づくセグメンテーションモデルの総合的なベンチマーク分析を行う。
2つの肺腫瘍セグメンテーションデータセットの性能評価を行い, 様々な学習パラダイムの下でセグメンテーションの精度と計算効率を評価した。
その結果, 従来のモデルでは腫瘍の非直線化に苦しむ一方で, 基礎モデル, 特にMedSAM~2では精度と計算効率が優れていた。
これらの知見は, 肺腫瘍切除の基礎モデルの可能性を強調し, 臨床ワークフローの改善と患者の予後について適用性を強調した。
関連論文リスト
- Multi-encoder nnU-Net outperforms Transformer models with self-supervised pretraining [0.0]
本研究は, 医用画像の解剖学的構造と病理的領域の自動同定と記述を含む, 医用画像セグメンテーションの課題に対処するものである。
本稿では,複数のMRIモダリティを別個のエンコーダで独立に処理するために設計された,自己教師型学習用マルチエンコーダnnU-Netアーキテクチャを提案する。
我々のマルチエンコーダnnU-Netは、Vanilla nnU-Net、SegResNet、Swin UNETRといった他のモデルを上回る93.72%のDice similarity Coefficient(DSC)を達成し、例外的な性能を示す。
論文 参考訳(メタデータ) (2025-04-04T14:31:06Z) - MAST-Pro: Dynamic Mixture-of-Experts for Adaptive Segmentation of Pan-Tumors with Knowledge-Driven Prompts [54.915060471994686]
MAST-Proは,ダイナミックなMixture-of-Experts(D-MoE)とパン腫瘍セグメンテーションのための知識駆動プロンプトを統合した新しいフレームワークである。
具体的には、テキストと解剖学的プロンプトは、腫瘍表現学習を導くドメイン固有の事前情報を提供し、D-MoEは、ジェネリックと腫瘍固有の特徴学習のバランスをとる専門家を動的に選択する。
マルチ解剖学的腫瘍データセットの実験では、MAST-Proは最先端のアプローチよりも優れており、トレーニング可能なパラメータを91.04%削減し、平均改善の5.20%を達成している。
論文 参考訳(メタデータ) (2025-03-18T15:39:44Z) - Detection-Guided Deep Learning-Based Model with Spatial Regularization for Lung Nodule Segmentation [2.4044422838107438]
肺がんはがんの診断の主要な原因の1つであり、世界中でがん関連死亡の原因となっている。
肺結節の分節は、悪性病変と良性病変の区別において、医師を支援する上で重要な役割を担っている。
本稿では,CT画像における肺結節のセグメンテーションモデルを導入し,セグメンテーションと分類プロセスを統合する深層学習フレームワークを活用する。
論文 参考訳(メタデータ) (2024-10-26T11:58:12Z) - Segmentation Strategies in Deep Learning for Prostate Cancer Diagnosis: A Comparative Study of Mamba, SAM, and YOLO [0.6116681488656472]
本研究は,前立腺癌組織像の分画のための深層学習法であるMamba,SAM,YOLOの比較分析を行った。
Gleason 2019 と SICAPv2 という2つの総合データセット上で,Dice スコア,精度,リコール指標を用いてこれらのモデルの性能を評価した。
H-Vmunetモデルの高度なアーキテクチャは、高階の視覚状態空間と2D選択的スキャン操作を統合することで、効率的かつセンシティブな病変検出を可能にする。
論文 参考訳(メタデータ) (2024-09-24T16:04:29Z) - Transformer-Based Self-Supervised Learning for Histopathological Classification of Ischemic Stroke Clot Origin [0.0]
虚血性脳卒中における血栓塞栓源の同定は治療と二次予防に不可欠である。
本研究は,虚血性脳梗塞の発生源を分類するためのエンボリのデジタル病理学における自己教師型深層学習アプローチについて述べる。
論文 参考訳(メタデータ) (2024-05-01T23:40:12Z) - Competence-based Multimodal Curriculum Learning for Medical Report
Generation [98.10763792453925]
本稿では,コンピテンスベースのマルチモーダルカリキュラム学習フレームワーク(CMCL)を提案する。
具体的には、CMCLは放射線学者の学習過程をシミュレートし、段階的にモデルを最適化する。
パブリックIU-XrayとMIMIC-CXRデータセットの実験は、CMCLを既存のモデルに組み込んでパフォーマンスを向上させることができることを示している。
論文 参考訳(メタデータ) (2022-06-24T08:16:01Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
本稿では, セグメンテーションによる異常胸部X線(CXR)識別性能を向上させるための深層学習手法を提案する。
提案手法は,CXR画像中の肺領域を局所化するための深層ニューラルネットワーク(XLSor)と,大規模CXRデータセットで事前学習した自己教師あり運動量コントラスト(MoCo)モデルのバックボーンを用いたCXR分類モデルである。
論文 参考訳(メタデータ) (2022-02-22T15:24:06Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
このフレームワークには、飲み込みレベルにおけるディープラーニングモデルと、学習レベルにおける機能ベースの機械学習モデルが含まれている。
これは、生のマルチスワローデータからHRM研究のCC診断を自動的に予測する最初の人工知能モデルである。
論文 参考訳(メタデータ) (2021-06-25T20:09:23Z) - CoRSAI: A System for Robust Interpretation of CT Scans of COVID-19
Patients Using Deep Learning [133.87426554801252]
我々は,深部畳み込み神経網のアンサンブルを用いた肺CTスキャンのセグメンテーションによるアプローチを採用した。
本モデルを用いて, 病変の分類, 患者の動態の評価, 病変による肺の相対体積の推定, 肺の損傷ステージの評価が可能となった。
論文 参考訳(メタデータ) (2021-05-25T12:06:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。