論文の概要: Fusing Foveal Fixations Using Linear Retinal Transformations and Bayesian Experimental Design
- arxiv url: http://arxiv.org/abs/2505.01249v1
- Date: Fri, 02 May 2025 13:17:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-05 17:21:20.030457
- Title: Fusing Foveal Fixations Using Linear Retinal Transformations and Bayesian Experimental Design
- Title(参考訳): リニア網膜変態を用いた焦点固定とベイズ実験設計
- Authors: Christopher K. I. Williams,
- Abstract要約: 我々は、固定の網膜変換を、シーンのリニアダウンサンプリング潜像として明確に表現する。
この変換により、シーンのFAモデルの因子分析と混合における潜伏変数の正確な推論を行うことができる。
- 参考スコア(独自算出の注目度): 4.5053219193867395
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Humans (and many vertebrates) face the problem of fusing together multiple fixations of a scene in order to obtain a representation of the whole, where each fixation uses a high-resolution fovea and decreasing resolution in the periphery. In this paper we explicitly represent the retinal transformation of a fixation as a linear downsampling of a high-resolution latent image of the scene, exploiting the known geometry. This linear transformation allows us to carry out exact inference for the latent variables in factor analysis (FA) and mixtures of FA models of the scene. Further, this allows us to formulate and solve the choice of "where to look next" as a Bayesian experimental design problem using the Expected Information Gain criterion. Experiments on the Frey faces and MNIST datasets demonstrate the effectiveness of our models.
- Abstract(参考訳): 人間(および多くの脊椎動物)は、全体の表現を得るためにシーンの複数の固定を融合する問題に直面し、それぞれの固定は高解像度の葉を使い、周囲の解像度を低下させる。
本稿では, 固定の網膜変換を, 高解像度の潜像の線形ダウンサンプリングとして表現し, 既知の幾何学的特徴を生かした。
この線形変換により、シーンの要因分析(FA)とFAモデルの混合における潜伏変数の正確な推論を行うことができる。
さらに、期待情報ゲイン基準を用いてベイズの実験設計問題として「次を見る場所」の選択を定式化し、解決することができる。
Freyの顔とMNISTデータセットの実験は、我々のモデルの有効性を実証している。
関連論文リスト
- Diffusing Differentiable Representations [60.72992910766525]
本稿では,事前学習した拡散モデルを用いて,微分可能な表現(拡散)をサンプリングする,新しい学習自由な手法を提案する。
差分によって引き起こされるサンプルに対する暗黙の制約を特定し、この制約に対処することで、生成されたオブジェクトの一貫性と詳細が大幅に改善されることを示す。
論文 参考訳(メタデータ) (2024-12-09T20:42:58Z) - Convergence Properties of Score-Based Models for Linear Inverse Problems Using Graduated Optimisation [44.99833362998488]
本稿では,スコアベース生成モデル(SGM)を用いて逆問題の解法を提案する。
初期値とは無関係に,高Ms画像の復元が可能であることを示す。
ソースはGitHubで公開されている。
論文 参考訳(メタデータ) (2024-04-29T13:47:59Z) - Solving Linear Inverse Problems Provably via Posterior Sampling with
Latent Diffusion Models [98.95988351420334]
本稿では,事前学習した潜在拡散モデルを利用した線形逆問題の解法を初めて提案する。
線形モデル設定において,証明可能なサンプル回復を示すアルゴリズムを理論的に解析する。
論文 参考訳(メタデータ) (2023-07-02T17:21:30Z) - A Variational Perspective on Solving Inverse Problems with Diffusion
Models [101.831766524264]
逆タスクは、データ上の後続分布を推測するものとして定式化することができる。
しかし、拡散過程の非線形的かつ反復的な性質が後部を引き付けるため、拡散モデルではこれは困難である。
そこで我々は,真の後続分布を近似する設計手法を提案する。
論文 参考訳(メタデータ) (2023-05-07T23:00:47Z) - RecRecNet: Rectangling Rectified Wide-Angle Images by Thin-Plate Spline
Model and DoF-based Curriculum Learning [62.86400614141706]
我々はRecRecNet(Rectangling Rectification Network)という新しい学習モデルを提案する。
我々のモデルは、ソース構造をターゲット領域に柔軟にワープし、エンドツーエンドの非教師なし変形を実現する。
実験により, 定量評価と定性評価の両面において, 比較法よりも解法の方が優れていることが示された。
論文 参考訳(メタデータ) (2023-01-04T15:12:57Z) - Tensor Component Analysis for Interpreting the Latent Space of GANs [41.020230946351816]
本稿では,GANの潜在空間における解釈可能な方向を求める問題に対処する。
提案手法では,テンソルの個々のモードに対応する線形編集と,それらの間の乗法的相互作用をモデル化する非線形編集が可能である。
実験により, 前者は幾何に基づく変換から, 後者は拡張可能な変換を生成できることを示す。
論文 参考訳(メタデータ) (2021-11-23T09:14:39Z) - Image Deformation Estimation via Multi-Objective Optimization [13.159751065619544]
自由形変形モデルは、画像上の制御点格子を操作することにより、幅広い非剛体変形を表現することができる。
フィットネスランドスケープの複雑さのため,変形画像にモデルを直接適合させることは困難である。
論文 参考訳(メタデータ) (2021-06-08T06:52:12Z) - Total Deep Variation for Linear Inverse Problems [71.90933869570914]
本稿では,近年のアーキテクチャ設計パターンを深層学習から活用する,学習可能な汎用正規化手法を提案する。
本稿では,古典的画像復元と医用画像再構成問題に対する最先端の性能について述べる。
論文 参考訳(メタデータ) (2020-01-14T19:01:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。