Enhancing Obsolescence Forecasting with Deep Generative Data Augmentation: A Semi-Supervised Framework for Low-Data Industrial Applications
- URL: http://arxiv.org/abs/2505.01261v1
- Date: Fri, 02 May 2025 13:28:50 GMT
- Title: Enhancing Obsolescence Forecasting with Deep Generative Data Augmentation: A Semi-Supervised Framework for Low-Data Industrial Applications
- Authors: Elie Saad, Mariem Besbes, Marc Zolghadri, Victor Czmil, Claude Baron, Vincent Bourgeois,
- Abstract summary: This work introduces a novel framework for obsolescence forecasting based on deep learning.<n>New obsolescence cases are generated and used to augment the training dataset.<n>The proposed framework demonstrates state-of-the-art results on benchmarking datasets.
- Score: 0.0879626117219674
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The challenge of electronic component obsolescence is particularly critical in systems with long life cycles. Various obsolescence management methods are employed to mitigate its impact, with obsolescence forecasting being a highly sought-after and prominent approach. As a result, numerous machine learning-based forecasting methods have been proposed. However, machine learning models require a substantial amount of relevant data to achieve high precision, which is lacking in the current obsolescence landscape in some situations. This work introduces a novel framework for obsolescence forecasting based on deep learning. The proposed framework solves the lack of available data through deep generative modeling, where new obsolescence cases are generated and used to augment the training dataset. The augmented dataset is then used to train a classical machine learning-based obsolescence forecasting model. To train classical forecasting models using augmented datasets, existing classical supervised-learning classifiers are adapted for semi-supervised learning within this framework. The proposed framework demonstrates state-of-the-art results on benchmarking datasets.
Related papers
- Beyond Data Scarcity: A Frequency-Driven Framework for Zero-Shot Forecasting [15.431513584239047]
Time series forecasting is critical in numerous real-world applications.
Traditional forecasting techniques struggle when data is scarce or not available at all.
Recent advancements often leverage large-scale foundation models for such tasks.
arXiv Detail & Related papers (2024-11-24T07:44:39Z) - Exploring the design space of deep-learning-based weather forecasting systems [56.129148006412855]
This paper systematically analyzes the impact of different design choices on deep-learning-based weather forecasting systems.
We study fixed-grid architectures such as UNet, fully convolutional architectures, and transformer-based models.
We propose a hybrid system that combines the strong performance of fixed-grid models with the flexibility of grid-invariant architectures.
arXiv Detail & Related papers (2024-10-09T22:25:50Z) - Automated Data Augmentation for Few-Shot Time Series Forecasting: A Reinforcement Learning Approach Guided by a Model Zoo [34.40047933452929]
We present a pilot study on using reinforcement learning (RL) for time series data augmentation.<n>Our method, ReAugment, tackles three critical questions: which parts of the training set should be augmented, how the augmentation should be performed, and what advantages RL brings to the process.
arXiv Detail & Related papers (2024-09-10T07:34:19Z) - Physics Sensor Based Deep Learning Fall Detection System [0.9128828609564524]
We build a complete system named TSFallDetect including data receiving device based on embedded sensor.
We exploit the sequential deep-learning methods to address this falling motion prediction problem based on data collected by inertial and film pressure sensors.
arXiv Detail & Related papers (2024-02-29T07:50:06Z) - TSPP: A Unified Benchmarking Tool for Time-series Forecasting [3.5415344166235534]
We propose a unified benchmarking framework that exposes the crucial modelling and machine learning decisions involved in developing time series forecasting models.
This framework fosters seamless integration of models and datasets, aiding both practitioners and researchers in their development efforts.
We benchmark recently proposed models within this framework, demonstrating that carefully implemented deep learning models with minimal effort can rival gradient-boosting decision trees.
arXiv Detail & Related papers (2023-12-28T16:23:58Z) - Retrieval-Enhanced Contrastive Vision-Text Models [61.783728119255365]
We propose to equip vision-text models with the ability to refine their embedding with cross-modal retrieved information from a memory at inference time.
Remarkably, we show that this can be done with a light-weight, single-layer, fusion transformer on top of a frozen CLIP.
Our experiments validate that our retrieval-enhanced contrastive (RECO) training improves CLIP performance substantially on several challenging fine-grained tasks.
arXiv Detail & Related papers (2023-06-12T15:52:02Z) - Deep networks for system identification: a Survey [56.34005280792013]
System identification learns mathematical descriptions of dynamic systems from input-output data.
Main aim of the identified model is to predict new data from previous observations.
We discuss architectures commonly adopted in the literature, like feedforward, convolutional, and recurrent networks.
arXiv Detail & Related papers (2023-01-30T12:38:31Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
We consider the impact of the training set and its structure on the quality of the long-term prediction.
We show how an informed design of the training set, based on invariants of the system and the structure of the underlying attractor, significantly improves the resulting models.
arXiv Detail & Related papers (2021-12-15T20:09:20Z) - A Meta-learning Approach to Reservoir Computing: Time Series Prediction
with Limited Data [0.0]
We present a data-driven approach to automatically extract an appropriate model structure from experimentally observed processes.
We demonstrate our approach on a simple benchmark problem, where it beats the state of the art meta-learning techniques.
arXiv Detail & Related papers (2021-10-07T18:23:14Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
We consider the problem of data-assisted forecasting of chaotic dynamical systems when the available data is noisy partial measurements.
We show that by using partial measurements of the state of the dynamical system, we can train a machine learning model to improve predictions made by an imperfect knowledge-based model.
arXiv Detail & Related papers (2021-02-15T19:56:48Z) - Statistical learning for accurate and interpretable battery lifetime
prediction [1.738360170201861]
We develop simple, accurate, and interpretable data-driven models for battery lifetime prediction.
Our approaches can be used both to quickly train models for a new dataset and to benchmark the performance of more advanced machine learning methods.
arXiv Detail & Related papers (2021-01-06T06:05:24Z) - Model-Based Deep Learning [155.063817656602]
Signal processing, communications, and control have traditionally relied on classical statistical modeling techniques.
Deep neural networks (DNNs) use generic architectures which learn to operate from data, and demonstrate excellent performance.
We are interested in hybrid techniques that combine principled mathematical models with data-driven systems to benefit from the advantages of both approaches.
arXiv Detail & Related papers (2020-12-15T16:29:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.