論文の概要: Learning Flow-Guided Registration for RGB-Event Semantic Segmentation
- arxiv url: http://arxiv.org/abs/2505.01548v2
- Date: Thu, 25 Sep 2025 07:06:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-26 16:29:06.347021
- Title: Learning Flow-Guided Registration for RGB-Event Semantic Segmentation
- Title(参考訳): RGBイベントセマンティックセマンティックセグメンテーションのためのフローガイド型レジストレーションの学習
- Authors: Zhen Yao, Xiaowen Ying, Zhiyu Zhu, Mooi Choo Chuah,
- Abstract要約: イベントカメラは、RGBセンサーを補完するマイクロ秒レベルのモーションキューをキャプチャする。
RGB-Eventセグメンテーションを融合から登録に再キャストする。
非対称なモーダル間の対応を適応的にマッチングする新しいフロー誘導双方向フレームワークであるBRENetを提案する。
- 参考スコア(独自算出の注目度): 22.996619370156584
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Event cameras capture microsecond-level motion cues that complement RGB sensors. However, the prevailing paradigm of treating RGB-Event perception as a fusion problem is ill-posed, as it ignores the intrinsic (i) Spatiotemporal and (ii) Modal Misalignment, unlike other RGB-X sensing domains. To tackle these limitations, we recast RGB-Event segmentation from fusion to registration. We propose BRENet, a novel flow-guided bidirectional framework that adaptively matches correspondence between the asymmetric modalities. Specifically, it leverages temporally aligned optical flows as a coarse-grained guide, along with fine-grained event temporal features, to generate precise forward and backward pixel pairings for registration. This pairing mechanism converts the inherent motion lag into terms governed by flow estimation error, bridging modality gaps. Moreover, we introduce Motion-Enhanced Event Tensor (MET), a new representation that transforms sparse event streams into a dense, temporally coherent form. Extensive experiments on four large-scale datasets validate our approach, establishing flow-guided registration as a promising direction for RGB-Event segmentation. Our code is available at: https://github.com/zyaocoder/BRENet.
- Abstract(参考訳): イベントカメラは、RGBセンサーを補完するマイクロ秒レベルのモーションキューをキャプチャする。
しかし、RGB-Event知覚を融合問題として扱うという主流パラダイムは、本質的に無視されるため、不適切である。
(i)時空間と時空間
(ii)他のRGB-Xセンシングドメインとは異なり、モダルミスアライメント。
これらの制限に対処するため、RGB-Eventセグメンテーションを融合から登録に再キャストする。
非対称なモダリティ間の対応を適応的にマッチングする新しいフロー誘導双方向フレームワークであるBRENetを提案する。
具体的には、微粒な事象の時間的特徴とともに、粗粒なガイドとして時間的に整列した光フローを活用し、正確に前方および後方の画素ペアリングを生成して登録する。
このペアリング機構は、固有運動ラグをフロー推定誤差によって支配される用語に変換し、モダリティギャップをブリッジする。
さらに,動き強化イベントテンソル(MET, Motion-Enhanced Event Tensor)を導入し,スパースイベントストリームを高密度な時間的コヒーレントな形式に変換する。
4つの大規模データセットの大規模な実験により、我々のアプローチが検証され、RGB-Eventセグメンテーションの有望な方向としてフロー誘導登録が確立された。
私たちのコードは、https://github.com/zyaocoder/BRENet.comで利用可能です。
関連論文リスト
- Spatially-guided Temporal Aggregation for Robust Event-RGB Optical Flow Estimation [47.75348821902489]
現在の光学フロー法は、フレーム(またはRGB)データの安定した出現を利用して、時間にわたって堅牢な対応を確立する。
一方、イベントカメラは、高時間分解能のモーションキューを提供し、挑戦的なシナリオに優れています。
本研究は,時間的に密度の高い事象モダリティの集合を導くために空間的に密度の高いモダリティを用いる新しいアプローチを提案する。
論文 参考訳(メタデータ) (2025-01-01T13:40:09Z) - Dynamic Subframe Splitting and Spatio-Temporal Motion Entangled Sparse Attention for RGB-E Tracking [32.86991031493605]
イベントベースのバイオニックカメラは、高時間分解能と高ダイナミックレンジで動的シーンをキャプチャする。
イベントストリームをよりきめ細かいイベントクラスタに分割する動的イベントサブフレーム分割戦略を提案する。
そこで我々は,事象特徴の時間的・空間的相互作用を高めるために,事象に基づくスパースアテンション機構を設計する。
論文 参考訳(メタデータ) (2024-09-26T06:12:08Z) - MambaPupil: Bidirectional Selective Recurrent model for Event-based Eye tracking [50.26836546224782]
事象に基づく視線追跡は、高時間分解能と低冗長性で非常に有望である。
点眼、固定、ササード、スムーズな追跡を含む眼球運動パターンの多様性と急激さは、眼球運動の局所化に重要な課題を提起する。
本稿では、文脈時空間情報を完全に活用するための双方向の長期シーケンスモデリングと時間変化状態選択機構を提案する。
論文 参考訳(メタデータ) (2024-04-18T11:09:25Z) - Revisiting Event-based Video Frame Interpolation [49.27404719898305]
ダイナミックビジョンセンサーやイベントカメラは、ビデオフレームに豊富な補完情報を提供する。
イベントからの光の流れを推定することは、RGB情報より間違いなく困難である。
イベントベースの中間フレーム合成を複数の単純化段階において漸進的に行う分割・対数戦略を提案する。
論文 参考訳(メタデータ) (2023-07-24T06:51:07Z) - Learning Spatial-Temporal Implicit Neural Representations for
Event-Guided Video Super-Resolution [9.431635577890745]
イベントカメラは、強度変化を非同期に検知し、高いダイナミックレンジと低レイテンシでイベントストリームを生成する。
これは、挑戦的なビデオ超解像(VSR)タスクを導くためにイベントを利用する研究にインスピレーションを与えている。
本稿では,イベントの高時間分解能の利点を生かして,ランダムスケールでのVSRの実現という新たな課題に対処する試みを行う。
論文 参考訳(メタデータ) (2023-03-24T02:42:16Z) - Dual Memory Aggregation Network for Event-Based Object Detection with
Learnable Representation [79.02808071245634]
イベントベースのカメラはバイオインスパイアされたセンサーで、各ピクセルの明るさ変化を非同期に捉える。
イベントストリームは、正極性と負極性の両方のためにx-y-t座標の格子に分割され、3次元テンソル表現として柱の集合が生成される。
長メモリは適応型convLSTMの隠れ状態に符号化され、短メモリはイベントピラー間の空間的時間的相関を計算することによってモデル化される。
論文 参考訳(メタデータ) (2023-03-17T12:12:41Z) - RGB-Event Fusion for Moving Object Detection in Autonomous Driving [3.5397758597664306]
移動物体検出(MOD)は安全な自動運転を実現するための重要な視覚課題である。
センサ技術の最近の進歩、特にイベントカメラは、移動物体をより良くモデル化するための従来のカメラアプローチを自然に補完することができる。
我々は、より堅牢なMODを実現するために、2つの相補的モダリティを共同で活用する新しいRGB-Event fusion NetworkであるRENetを提案する。
論文 参考訳(メタデータ) (2022-09-17T12:59:08Z) - Event Transformer [43.193463048148374]
イベントカメラの消費電力が低く、マイクロ秒の明るさを捉える能力は、様々なコンピュータビジョンタスクにとって魅力的である。
既存のイベント表現方法は通常、イベントをフレーム、ボクセルグリッド、ディープニューラルネットワーク(DNN)のスパイクに変換する。
この研究はトークンベースの新しいイベント表現を導入し、各イベントはイベントトークンと呼ばれる基本的な処理ユニットと見なされる。
論文 参考訳(メタデータ) (2022-04-11T15:05:06Z) - ProgressiveMotionSeg: Mutually Reinforced Framework for Event-Based
Motion Segmentation [101.19290845597918]
本稿では,動作推定 (ME) モジュールとイベントデノイング (ED) モジュールを相互に強化された方法で共同最適化する。
時間的相関をガイダンスとして、EDモジュールは各イベントが実活動イベントに属するという信頼度を算出し、MEモジュールに送信し、ノイズ抑制のための運動セグメンテーションのエネルギー関数を更新する。
論文 参考訳(メタデータ) (2022-03-22T13:40:26Z) - Decoupling and Recoupling Spatiotemporal Representation for RGB-D-based
Motion Recognition [62.46544616232238]
従来の動作認識手法は、密結合した多時間表現によって有望な性能を実現している。
本稿では,RGB-D に基づく動作認識において引き起こされた表現を分離し,再分離することを提案する。
論文 参考訳(メタデータ) (2021-12-16T18:59:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。