A Sensor Agnostic Domain Generalization Framework for Leveraging Geospatial Foundation Models: Enhancing Semantic Segmentation viaSynergistic Pseudo-Labeling and Generative Learning
- URL: http://arxiv.org/abs/2505.01558v1
- Date: Fri, 02 May 2025 19:52:02 GMT
- Title: A Sensor Agnostic Domain Generalization Framework for Leveraging Geospatial Foundation Models: Enhancing Semantic Segmentation viaSynergistic Pseudo-Labeling and Generative Learning
- Authors: Anan Yaghmour, Melba M. Crawford, Saurabh Prasad,
- Abstract summary: High-performance segmentation models are challenged by annotation scarcity and variability across sensors, illumination, and geography.<n>This paper introduces a domain generalization approach to leveraging emerging geospatial foundation models by combining soft-alignment pseudo-labeling with source-to-target generative pre-training.<n> Experiments with hyperspectral and multispectral remote sensing datasets confirm our method's effectiveness in enhancing adaptability and segmentation.
- Score: 5.299218284699214
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Remote sensing enables a wide range of critical applications such as land cover and land use mapping, crop yield prediction, and environmental monitoring. Advances in satellite technology have expanded remote sensing datasets, yet high-performance segmentation models remain dependent on extensive labeled data, challenged by annotation scarcity and variability across sensors, illumination, and geography. Domain adaptation offers a promising solution to improve model generalization. This paper introduces a domain generalization approach to leveraging emerging geospatial foundation models by combining soft-alignment pseudo-labeling with source-to-target generative pre-training. We further provide new mathematical insights into MAE-based generative learning for domain-invariant feature learning. Experiments with hyperspectral and multispectral remote sensing datasets confirm our method's effectiveness in enhancing adaptability and segmentation.
Related papers
- TerraFM: A Scalable Foundation Model for Unified Multisensor Earth Observation [65.74990259650984]
We introduce TerraFM, a scalable self-supervised learning model that leverages globally distributed Sentinel-1 and Sentinel-2 imagery.<n>Our training strategy integrates local-global contrastive learning and introduces a dual-centering mechanism.<n>TerraFM achieves strong generalization on both classification and segmentation tasks, outperforming prior models on GEO-Bench and Copernicus-Bench.
arXiv Detail & Related papers (2025-06-06T17:59:50Z) - SegDesicNet: Lightweight Semantic Segmentation in Remote Sensing with Geo-Coordinate Embeddings for Domain Adaptation [0.5461938536945723]
We propose a novel unsupervised domain adaptation technique for remote sensing semantic segmentation.<n>Our proposed SegDesicNet module regresses the GRID positional encoding of the geo coordinates projected over the unit sphere to obtain the domain loss.<n>Our algorithm seeks to reduce the modeling disparity between artificial neural networks and human comprehension of the physical world.
arXiv Detail & Related papers (2025-03-11T11:01:18Z) - TrajLearn: Trajectory Prediction Learning using Deep Generative Models [4.097342535693401]
Trajectory prediction aims to estimate an entity's future path using its current position and historical movement data.<n>To address these challenges, we introduce TrajLearn, a novel model for trajectory prediction.<n>TrajLearn predicts the next $k$ steps by integrating a customized beam search for exploring multiple potential paths.
arXiv Detail & Related papers (2024-12-30T23:38:52Z) - Object Style Diffusion for Generalized Object Detection in Urban Scene [69.04189353993907]
We introduce a novel single-domain object detection generalization method, named GoDiff.<n>By integrating pseudo-target domain data with source domain data, we diversify the training dataset.<n> Experimental results demonstrate that our method not only enhances the generalization ability of existing detectors but also functions as a plug-and-play enhancement for other single-domain generalization methods.
arXiv Detail & Related papers (2024-12-18T13:03:00Z) - Multisource Collaborative Domain Generalization for Cross-Scene Remote Sensing Image Classification [57.945437355714155]
Cross-scene image classification aims to transfer prior knowledge of ground materials to annotate regions with different distributions.<n>Existing approaches focus on single-source domain generalization to unseen target domains.<n>We propose a novel multi-source collaborative domain generalization framework (MS-CDG) based on homogeneity and heterogeneity characteristics of multi-source remote sensing data.
arXiv Detail & Related papers (2024-12-05T06:15:08Z) - Domain Expansion and Boundary Growth for Open-Set Single-Source Domain Generalization [70.02187124865627]
Open-set single-source domain generalization aims to use a single-source domain to learn a robust model that can be generalized to unknown target domains.
We propose a novel learning approach based on domain expansion and boundary growth to expand the scarce source samples.
Our approach can achieve significant improvements and reach state-of-the-art performance on several cross-domain image classification datasets.
arXiv Detail & Related papers (2024-11-05T09:08:46Z) - StyDeSty: Min-Max Stylization and Destylization for Single Domain Generalization [85.18995948334592]
Single domain generalization (single DG) aims at learning a robust model generalizable to unseen domains from only one training domain.
State-of-the-art approaches have mostly relied on data augmentations, such as adversarial perturbation and style enhancement, to synthesize new data.
We propose emphStyDeSty, which explicitly accounts for the alignment of the source and pseudo domains in the process of data augmentation.
arXiv Detail & Related papers (2024-06-01T02:41:34Z) - Adaptive Global-Local Representation Learning and Selection for
Cross-Domain Facial Expression Recognition [54.334773598942775]
Domain shift poses a significant challenge in Cross-Domain Facial Expression Recognition (CD-FER)
We propose an Adaptive Global-Local Representation Learning and Selection framework.
arXiv Detail & Related papers (2024-01-20T02:21:41Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
Source-free domain adaptation (SFDA) aims to adapt a well-trained source model to an unlabelled target domain without accessing the source dataset.
Existing SFDA methods ONLY assess their adapted models on the target training set, neglecting the data from unseen but identically distributed testing sets.
We propose a consistency regularization framework to develop a more generalizable SFDA method.
arXiv Detail & Related papers (2023-08-03T07:45:53Z) - Clustering augmented Self-Supervised Learning: Anapplication to Land
Cover Mapping [10.720852987343896]
We introduce a new method for land cover mapping by using a clustering based pretext task for self-supervised learning.
We demonstrate the effectiveness of the method on two societally relevant applications.
arXiv Detail & Related papers (2021-08-16T19:35:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.