論文の概要: Causally Fair Node Classification on Non-IID Graph Data
- arxiv url: http://arxiv.org/abs/2505.01652v1
- Date: Sat, 03 May 2025 02:05:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-06 18:49:35.217613
- Title: Causally Fair Node Classification on Non-IID Graph Data
- Title(参考訳): 非IIDグラフデータによる因果公正ノード分類
- Authors: Yucong Dai, Lu Zhang, Yaowei Hu, Susan Gauch, Yongkai Wu,
- Abstract要約: 本稿では,フェアネスを考慮したMLアルゴリズムにおける課題について述べる。
非IID、グラフベースの設定の見落としている領域に取り組みます。
因果推論のためのメッセージパッシング変分オートエンコーダを開発した。
- 参考スコア(独自算出の注目度): 9.363036392218435
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fair machine learning seeks to identify and mitigate biases in predictions against unfavorable populations characterized by demographic attributes, such as race and gender. Recently, a few works have extended fairness to graph data, such as social networks, but most of them neglect the causal relationships among data instances. This paper addresses the prevalent challenge in fairness-aware ML algorithms, which typically assume Independent and Identically Distributed (IID) data. We tackle the overlooked domain of non-IID, graph-based settings where data instances are interconnected, influencing the outcomes of fairness interventions. We base our research on the Network Structural Causal Model (NSCM) framework and posit two main assumptions: Decomposability and Graph Independence, which enable the computation of interventional distributions in non-IID settings using the $do$-calculus. Based on that, we develop the Message Passing Variational Autoencoder for Causal Inference (MPVA) to compute interventional distributions and facilitate causally fair node classification through estimated interventional distributions. Empirical evaluations on semi-synthetic and real-world datasets demonstrate that MPVA outperforms conventional methods by effectively approximating interventional distributions and mitigating bias. The implications of our findings underscore the potential of causality-based fairness in complex ML applications, setting the stage for further research into relaxing the initial assumptions to enhance model fairness.
- Abstract(参考訳): 公正な機械学習は、人種や性別などの人口特性によって特徴づけられる好ましくない人口に対する予測においてバイアスを識別し緩和しようとする。
近年,ソーシャルネットワークなど,グラフデータに対する公正性に関する研究がいくつか行われているが,そのほとんどはデータインスタンス間の因果関係を無視している。
本稿では、独立分散(IID)データを想定したフェアネス対応MLアルゴリズムの課題に対処する。
我々は、データインスタンスが相互接続される非IID、グラフベースの設定の見過ごされた領域に取り組み、公正な介入の結果に影響を与える。
我々はNSCM(Network Structure Causal Model)フレームワークについて研究を行い、デコンポスタビリティ(Decomposability)とグラフ独立性(Graph Independence)という2つの前提を仮定した。
そこで我々は, 因果推論のためのメッセージパッシング変分オートエンコーダ(MPVA)を開発し, 干渉分布を計算し, 推定介入分布による因果公正ノード分類を容易にする。
半合成および実世界のデータセットに関する実証的な評価は、MPVAが介入分布を効果的に近似しバイアスを緩和することによって従来の手法より優れていることを示している。
この結果から, 複雑なMLアプリケーションにおける因果性に基づくフェアネスの可能性が示唆され, モデルフェアネスを高めるための初期仮定の緩和に向けたさらなる研究のステージが整った。
関連論文リスト
- Fair CoVariance Neural Networks [34.68621550644667]
本稿では,Fair CoVariance Neural Networks (FVNN) を提案する。
我々は,FVNNが類似のPCAアプローチよりも本質的に公平であることを証明する。
論文 参考訳(メタデータ) (2024-09-13T06:24:18Z) - Deriving Causal Order from Single-Variable Interventions: Guarantees & Algorithm [14.980926991441345]
介入データを含むデータセットは,データ分布に関する現実的な仮定の下で効果的に抽出可能であることを示す。
観察的および介入的設定における各変数の限界分布の比較に依拠する介入忠実性を導入する。
また、多数の単一変数の介入を含むデータセットから因果順序を推測するアルゴリズムであるIntersortを導入する。
論文 参考訳(メタデータ) (2024-05-28T16:07:17Z) - Identifiable Latent Neural Causal Models [82.14087963690561]
因果表現学習は、低レベルの観測データから潜伏した高レベルの因果表現を明らかにすることを目指している。
因果表現の識別可能性に寄与する分布シフトのタイプを決定する。
本稿では,本研究の成果を実用的なアルゴリズムに翻訳し,信頼性の高い潜在因果表現の取得を可能にする。
論文 参考訳(メタデータ) (2024-03-23T04:13:55Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
ニューラルネットワークで実装された効率的かつ効果的な対実的推論のためのフレームワークを提案する。
提案手法は、推定された反事実結果から見つからないデータまでを一般化する能力を高める。
複数のデータセットで実施した実証実験の結果は、我々の理論的な主張に対する説得力のある支持を提供する。
論文 参考訳(メタデータ) (2023-06-09T08:30:51Z) - D-BIAS: A Causality-Based Human-in-the-Loop System for Tackling
Algorithmic Bias [57.87117733071416]
D-BIASは、人間のループ内AIアプローチを具現化し、社会的バイアスを監査し軽減する視覚対話型ツールである。
ユーザは、因果ネットワークにおける不公平な因果関係を識別することにより、グループに対する偏見の存在を検出することができる。
それぞれのインタラクション、例えばバイアスのある因果縁の弱体化/削除は、新しい(偏りのある)データセットをシミュレートするために、新しい方法を用いている。
論文 参考訳(メタデータ) (2022-08-10T03:41:48Z) - Handling Distribution Shifts on Graphs: An Invariance Perspective [78.31180235269035]
我々は、グラフ上のOOD問題を定式化し、新しい不変学習手法である探索・拡張リスク最小化(EERM)を開発する。
EERMは、複数の仮想環境からのリスクの分散を最大化するために、敵対的に訓練された複数のコンテキストエクスプローラーを利用する。
理論的に有効なOOD解の保証を示すことによって,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2022-02-05T02:31:01Z) - Supercharging Imbalanced Data Learning With Energy-based Contrastive
Representation Transfer [72.5190560787569]
コンピュータビジョンにおいて、長い尾のデータセットからの学習は、特に自然画像データセットの繰り返しのテーマである。
本稿では,データ生成機構がラベル条件と特徴分布の間で不変であるメタ分散シナリオを提案する。
これにより、因果データインフレーションの手順を利用してマイノリティクラスの表現を拡大できる。
論文 参考訳(メタデータ) (2020-11-25T00:13:11Z) - On Disentangled Representations Learned From Correlated Data [59.41587388303554]
相関データに対する最も顕著な絡み合うアプローチの挙動を解析することにより、現実のシナリオにギャップを埋める。
本研究では,データセットの体系的相関が学習され,潜在表現に反映されていることを示す。
また、トレーニング中の弱い監督や、少数のラベルで事前訓練されたモデルを修正することで、これらの潜伏相関を解消する方法を実証する。
論文 参考訳(メタデータ) (2020-06-14T12:47:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。