論文の概要: Efficient Shapley Value-based Non-Uniform Pruning of Large Language Models
- arxiv url: http://arxiv.org/abs/2505.01731v3
- Date: Wed, 21 May 2025 01:38:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-22 15:42:58.4169
- Title: Efficient Shapley Value-based Non-Uniform Pruning of Large Language Models
- Title(参考訳): シェープ値に基づく大規模言語モデルの効率的な非一様プルーニング
- Authors: Chuan Sun, Han Yu, Lizhen Cui, Xiaoxiao Li,
- Abstract要約: 大規模言語モデル(LLM)のプルーニングは、性能を保ちながら、モデルのサイズと計算の複雑さを減らすための有望なソリューションである。
LLMのためのShapley Value-based Non-Uniform Pruning (SV-NUP)法を提案する。
このアプローチは,各トランス層がモデル全体の性能に与える影響を定量的に評価し,各層に最適化されたプルーニング予算を割り当てることで,臨界パラメータを維持できる。
- 参考スコア(独自算出の注目度): 43.4962029013024
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pruning large language models (LLMs) is a promising solution for reducing model sizes and computational complexity while preserving performance. Traditional layer-wise pruning methods often adopt a uniform sparsity approach across all layers, which leads to suboptimal performance due to the varying significance of individual transformer layers within the model not being accounted for. To this end, we propose the Shapley Value-based Non-Uniform Pruning (SV-NUP) method for LLMs. This approach quantifies the contribution of each transformer layer to the overall model performance, enabling the assignment of tailored pruning budgets to different layers to retain critical parameters. To further improve efficiency, we design the Sliding Window-based Shapley Value approximation method. It substantially reduces computational overhead compared to exact SV calculation methods. Extensive experiments on various LLMs including LLaMA-v1, LLaMA-v2 and OPT demonstrate the effectiveness of the proposed approach. The results reveal that non-uniform pruning significantly enhances the performance of pruned models. Notably, SV-NUP achieves a reduction in perplexity (PPL) of 18.01% and 19.55% on LLaMA-7B and LLaMA-13B, respectively, compared to SparseGPT at 70% sparsity.
- Abstract(参考訳): 大規模言語モデル(LLM)のプルーニングは、性能を保ちながら、モデルのサイズと計算の複雑さを減らすための有望なソリューションである。
従来のレイヤワイドプルーニング手法は、すべてのレイヤに均一なスペーサ性アプローチを採用することが多いため、考慮されていないモデル内の個々のトランスフォーマー層の重要性が変化するため、最適化性能が低下する。
そこで本研究では,LSMに対するShapley Value-based Non-Uniform Pruning (SV-NUP)法を提案する。
このアプローチは,各トランス層がモデル全体の性能に与える影響を定量的に評価し,各層に最適化されたプルーニング予算を割り当てることで,臨界パラメータを維持できる。
Sliding Window を用いたShapley Value approximation法を設計する。
これは正確なSV計算法に比べて計算オーバーヘッドを大幅に削減する。
LLaMA-v1, LLaMA-v2, OPTなどの多種多様なLLMに対する実験により, 提案手法の有効性が示された。
その結果,非均一プルーニングはプルーニングモデルの性能を著しく向上させることがわかった。
特に、SV-NUP は SparseGPT と比較して LLaMA-7B と LLaMA-13B で 18.01% と 19.55% のパープレキシティ (PPL) を減少させる。
関連論文リスト
- Seesaw: High-throughput LLM Inference via Model Re-sharding [8.840996987380484]
本稿ではスループット指向タスクに最適化された推論エンジンであるSeesawを紹介する。
Seesawの背景にある主要なアイデアは、並列化戦略の動的再構成を容易にする技術である動的モデル再シャーディングである。
論文 参考訳(メタデータ) (2025-03-09T04:14:06Z) - Zeroth-Order Fine-Tuning of LLMs in Random Subspaces [66.27334633749734]
言語モデルのサイズが大きくなるにつれて、バックプロパゲーションに対するメモリ要求が増加する。
Zeroth-order (ZOZO) 最適化手法はメモリ効率の代替手段を提供する。
本稿では,SubZeroがファインチューニングを強化し,通常のZOZO手法と比較して高速な結果が得られることを示す。
論文 参考訳(メタデータ) (2024-10-11T17:01:43Z) - A Convex-optimization-based Layer-wise Post-training Pruner for Large Language Models [24.185245582500876]
本稿では,凸最適化モデルとアルゴリズムに基づく最初のポストトレーニングプルーナであるFISTAPrunerを紹介する。
FISTAPrunerは層内累積誤差補正機構を搭載し、並列プルーニングをサポートする。
OPT, LLaMA, LLaMA-2, LLaMA-3 などのモデルにおける FISTAPruner の評価を行った。
論文 参考訳(メタデータ) (2024-08-07T12:33:46Z) - Bypass Back-propagation: Optimization-based Structural Pruning for Large Language Models via Policy Gradient [57.9629676017527]
大規模言語モデルを用いた最適化に基づく構造解析手法を提案する。
我々は,プルーニングモデルの損失を最適化することにより,確率空間におけるプルーニングマスクを直接学習する。
A100 GPUで13Bモデルに対して約35GBのメモリで2.7時間動作させる。
論文 参考訳(メタデータ) (2024-06-15T09:31:03Z) - SPP: Sparsity-Preserved Parameter-Efficient Fine-Tuning for Large Language Models [53.638791265113625]
空間保存型大規模言語モデルのための効率的な微調整法
コードはhttps://github.com/Lucky-Lance/SPP.comで公開される。
論文 参考訳(メタデータ) (2024-05-25T04:55:27Z) - ECoFLaP: Efficient Coarse-to-Fine Layer-Wise Pruning for Vision-Language
Models [70.45441031021291]
LVLM(Large Vision-Language Models)は、様々なモダリティから豊富な情報を統合することで、世界を包括的に理解することができる。
LVLMは計算/エネルギーの膨大なコストと炭素消費のためにしばしば問題となる。
本稿では,LVLMの2段間粗大な重み付け法であるECoFLaP(Efficient Coarse-to-Fine LayerWise Pruning)を提案する。
論文 参考訳(メタデータ) (2023-10-04T17:34:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。