Unraveling Media Perspectives: A Comprehensive Methodology Combining Large Language Models, Topic Modeling, Sentiment Analysis, and Ontology Learning to Analyse Media Bias
- URL: http://arxiv.org/abs/2505.01754v1
- Date: Sat, 03 May 2025 09:09:34 GMT
- Title: Unraveling Media Perspectives: A Comprehensive Methodology Combining Large Language Models, Topic Modeling, Sentiment Analysis, and Ontology Learning to Analyse Media Bias
- Authors: Orlando Jähde, Thorsten Weber, Rüdiger Buchkremer,
- Abstract summary: This study introduces a novel methodology for scalable, minimally biased analysis of media bias in political news.<n>The proposed approach examines event selection, labeling, word choice, and commission and omission biases across news sources.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Biased news reporting poses a significant threat to informed decision-making and the functioning of democracies. This study introduces a novel methodology for scalable, minimally biased analysis of media bias in political news. The proposed approach examines event selection, labeling, word choice, and commission and omission biases across news sources by leveraging natural language processing techniques, including hierarchical topic modeling, sentiment analysis, and ontology learning with large language models. Through three case studies related to current political events, we demonstrate the methodology's effectiveness in identifying biases across news sources at various levels of granularity. This work represents a significant step towards scalable, minimally biased media bias analysis, laying the groundwork for tools to help news consumers navigate an increasingly complex media landscape.
Related papers
- Decoding News Bias: Multi Bias Detection in News Articles [1.433758865948252]
We have explored various biases present in the news articles and built a dataset using large language models (LLMs)<n>Our approach highlights the importance of broad-spectrum bias detection and offers new insights for improving the integrity of news articles.
arXiv Detail & Related papers (2025-01-05T09:09:53Z) - P^3SUM: Preserving Author's Perspective in News Summarization with Diffusion Language Models [57.571395694391654]
We find that existing approaches alter the political opinions and stances of news articles in more than 50% of summaries.
We propose P3SUM, a diffusion model-based summarization approach controlled by political perspective classifiers.
Experiments on three news summarization datasets demonstrate that P3SUM outperforms state-of-the-art summarization systems.
arXiv Detail & Related papers (2023-11-16T10:14:28Z) - Exploring the Jungle of Bias: Political Bias Attribution in Language Models via Dependency Analysis [86.49858739347412]
Large Language Models (LLMs) have sparked intense debate regarding the prevalence of bias in these models and its mitigation.
We propose a prompt-based method for the extraction of confounding and mediating attributes which contribute to the decision process.
We find that the observed disparate treatment can at least in part be attributed to confounding and mitigating attributes and model misalignment.
arXiv Detail & Related papers (2023-11-15T00:02:25Z) - Learning Unbiased News Article Representations: A Knowledge-Infused
Approach [0.0]
We propose a knowledge-infused deep learning model that learns unbiased representations of news articles using global and local contexts.
We show that the proposed model mitigates algorithmic political bias and outperforms baseline methods to predict the political leaning of news articles with up to 73% accuracy.
arXiv Detail & Related papers (2023-09-12T06:20:34Z) - Towards Corpus-Scale Discovery of Selection Biases in News Coverage:
Comparing What Sources Say About Entities as a Start [65.28355014154549]
This paper investigates the challenges of building scalable NLP systems for discovering patterns of media selection biases directly from news content in massive-scale news corpora.
We show the capabilities of the framework through a case study on NELA-2020, a corpus of 1.8M news articles in English from 519 news sources worldwide.
arXiv Detail & Related papers (2023-04-06T23:36:45Z) - Bias or Diversity? Unraveling Fine-Grained Thematic Discrepancy in U.S.
News Headlines [63.52264764099532]
We use a large dataset of 1.8 million news headlines from major U.S. media outlets spanning from 2014 to 2022.
We quantify the fine-grained thematic discrepancy related to four prominent topics - domestic politics, economic issues, social issues, and foreign affairs.
Our findings indicate that on domestic politics and social issues, the discrepancy can be attributed to a certain degree of media bias.
arXiv Detail & Related papers (2023-03-28T03:31:37Z) - Unveiling the Hidden Agenda: Biases in News Reporting and Consumption [59.55900146668931]
We build a six-year dataset on the Italian vaccine debate and adopt a Bayesian latent space model to identify narrative and selection biases.
We found a nonlinear relationship between biases and engagement, with higher engagement for extreme positions.
Analysis of news consumption on Twitter reveals common audiences among news outlets with similar ideological positions.
arXiv Detail & Related papers (2023-01-14T18:58:42Z) - NeuS: Neutral Multi-News Summarization for Mitigating Framing Bias [54.89737992911079]
We propose a new task, a neutral summary generation from multiple news headlines of the varying political spectrum.
One of the most interesting observations is that generation models can hallucinate not only factually inaccurate or unverifiable content, but also politically biased content.
arXiv Detail & Related papers (2022-04-11T07:06:01Z) - An Interdisciplinary Approach for the Automated Detection and
Visualization of Media Bias in News Articles [0.0]
I aim to devise data sets and methods to identify media bias.
My vision is to devise a system that helps news readers become aware of media coverage differences caused by bias.
arXiv Detail & Related papers (2021-12-26T10:46:32Z) - How to Effectively Identify and Communicate Person-Targeting Media Bias
in Daily News Consumption? [8.586057042714698]
We present an in-progress system for news recommendation that is the first to automate the manual procedure of content analysis.
Our recommender detects and reveals substantial frames that are actually present in individual news articles.
Our study shows that recommending news articles that differently frame an event significantly improves respondents' awareness of bias.
arXiv Detail & Related papers (2021-10-18T10:13:23Z) - "Don't quote me on that": Finding Mixtures of Sources in News Articles [85.92467549469147]
We construct an ontological labeling system for sources based on each source's textitaffiliation and textitrole
We build a probabilistic model to infer these attributes for named sources and to describe news articles as mixtures of these sources.
arXiv Detail & Related papers (2021-04-19T21:57:11Z) - Analyzing Political Bias and Unfairness in News Articles at Different
Levels of Granularity [35.19976910093135]
The research presented in this paper addresses not only the automatic detection of bias but goes one step further in that it explores how political bias and unfairness are manifested linguistically.
We utilize a new corpus of 6964 news articles with labels derived from adfontesmedia.com and develop a neural model for bias assessment.
arXiv Detail & Related papers (2020-10-20T22:25:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.