論文の概要: LLM-OptiRA: LLM-Driven Optimization of Resource Allocation for Non-Convex Problems in Wireless Communications
- arxiv url: http://arxiv.org/abs/2505.02091v1
- Date: Sun, 04 May 2025 12:53:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-06 18:49:35.421535
- Title: LLM-OptiRA: LLM-Driven Optimization of Resource Allocation for Non-Convex Problems in Wireless Communications
- Title(参考訳): LLM-OptiRA:無線通信における非凸問題に対する資源割当最適化
- Authors: Xinyue Peng, Yanming Liu, Yihan Cang, Chaoqun Cao, Ming Chen,
- Abstract要約: 無線通信における非リソース割り当て問題の解法を示す。
また、エラー訂正率を80%にする方法も示す。
- 参考スコア(独自算出の注目度): 5.566493560848011
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Solving non-convex resource allocation problems poses significant challenges in wireless communication systems, often beyond the capability of traditional optimization techniques. To address this issue, we propose LLM-OptiRA, the first framework that leverages large language models (LLMs) to automatically detect and transform non-convex components into solvable forms, enabling fully automated resolution of non-convex resource allocation problems in wireless communication systems. LLM-OptiRA not only simplifies problem-solving by reducing reliance on expert knowledge, but also integrates error correction and feasibility validation mechanisms to ensure robustness. Experimental results show that LLM-OptiRA achieves an execution rate of 96% and a success rate of 80% on GPT-4, significantly outperforming baseline approaches in complex optimization tasks across diverse scenarios.
- Abstract(参考訳): 非凸資源割り当て問題の解決は、無線通信システムにおいて、しばしば従来の最適化手法の能力を超えた重要な課題となる。
この問題に対処するため,LLM-OptiRAは,大規模言語モデル(LLM)を利用した最初のフレームワークであり,非凸成分を自動的に検出・変換し,無線通信システムにおける非凸資源割り当て問題の完全自動解決を可能にする。
LLM-OptiRAは、専門家の知識への依存を減らすことで問題解決を単純化するだけでなく、誤り訂正と実現可能性検証機構を統合して堅牢性を確保する。
実験結果から,LCM-OptiRAはGPT-4で実行率96%,成功率80%を達成した。
関連論文リスト
- Confident or Seek Stronger: Exploring Uncertainty-Based On-device LLM Routing From Benchmarking to Generalization [61.02719787737867]
大規模言語モデル(LLM)はますますエッジデバイスにデプロイされ、民主化されている。
1つの有望な解決策は不確実性に基づくSLMルーティングであり、SLM上での低信頼応答が発生すると、高い要求を強いLCMにオフロードする。
我々は1500以上の設定でSLMからLLMへの不確実性駆動型ルーティング戦略のベンチマークと一般化を包括的に調査する。
論文 参考訳(メタデータ) (2025-02-06T18:59:11Z) - Adaptive Resource Allocation Optimization Using Large Language Models in Dynamic Wireless Environments [25.866960634041092]
現在のソリューションはドメイン固有のアーキテクチャや技術に依存しており、制約付き最適化のための一般的なDLアプローチは未開発のままである。
本稿では,制約を順守しながら複雑な資源配分問題に対処するために,資源割当(LLM-RAO)のための大規模言語モデルを提案する。
LLM-RAO は従来の DL 法と比較して最大40% の性能向上を実現し,分析手法よりも80$% 向上した。
論文 参考訳(メタデータ) (2025-02-04T12:56:59Z) - Optima: Optimizing Effectiveness and Efficiency for LLM-Based Multi-Agent System [75.25394449773052]
大規模言語モデル (LLM) に基づくマルチエージェントシステム (MAS) は協調的問題解決において顕著な可能性を示している。
通信効率の低下、スケーラビリティの低下、効果的なパラメータ更新方法の欠如などです。
本稿では,コミュニケーション効率とタスク効率を両立させ,これらの課題に対処する新しいフレームワークOptimaを提案する。
論文 参考訳(メタデータ) (2024-10-10T17:00:06Z) - A Multi-Agent Approach to Fault Localization via Graph-Based Retrieval and Reflexion [8.22737389683156]
従来のフォールトローカライゼーション技術は、広範なトレーニングデータセットと高い計算資源を必要とする。
大規模言語モデル(LLM)の最近の進歩は、コード理解と推論を強化することで、新たな機会を提供する。
LLM4FLは3つの特殊なLLMエージェントを利用するマルチエージェントの故障局所化フレームワークである。
14のJavaプロジェクトから675の障害を含むDefects4Jベンチマークで評価され、LLM4FLはAutoFLよりも18.55%、SoapFLより4.82%、Top-1の精度が18.55%向上した。
論文 参考訳(メタデータ) (2024-09-20T16:47:34Z) - LLM-Empowered Resource Allocation in Wireless Communications Systems [12.653336728447654]
大規模言語モデル(LLM)は、人工知能(AGI)対応無線ネットワークを実現する可能性を秘めている。
我々は,無線通信システムのための LLM ベースの資源割当方式を開発した。
論文 参考訳(メタデータ) (2024-08-06T04:08:26Z) - Characterization of Large Language Model Development in the Datacenter [55.9909258342639]
大きな言語モデル(LLM)は、いくつかの変換タスクにまたがって素晴らしいパフォーマンスを示している。
しかし,大規模クラスタ資源を効率よく利用してLCMを開発することは容易ではない。
我々は,GPUデータセンタAcmeから収集した6ヶ月のLDM開発ワークロードの詳細な評価を行った。
論文 参考訳(メタデータ) (2024-03-12T13:31:14Z) - SparseLLM: Towards Global Pruning for Pre-trained Language Models [12.057369029549534]
本研究では,グローバルプルーニングプロセスを再定義する新しいフレームワークであるSparseLLMを提案する。
SparseLLMのアプローチは、LLMをモジュラ関数の連鎖として概念化し、問題の分解に補助変数を利用する。
高いスパーシティ・レシエーションにおいて、特に顕著なパフォーマンス向上を示す。
論文 参考訳(メタデータ) (2024-02-28T00:09:07Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
インテリジェントサーフェス(IRS)は、個々の散乱素子の位相シフトを制御して無線チャネルを再形成するために用いられる。
散乱素子の規模が大きいため、受動ビームフォーミングは一般に高い計算複雑性によって挑戦される。
本稿では、IRS支援無線ネットワークの性能向上のための機械学習(ML)アプローチに焦点を当てる。
論文 参考訳(メタデータ) (2020-08-29T08:39:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。