論文の概要: Adaptive Resource Allocation Optimization Using Large Language Models in Dynamic Wireless Environments
- arxiv url: http://arxiv.org/abs/2502.02287v1
- Date: Tue, 04 Feb 2025 12:56:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 14:52:16.374835
- Title: Adaptive Resource Allocation Optimization Using Large Language Models in Dynamic Wireless Environments
- Title(参考訳): 動的無線環境における大規模言語モデルを用いた適応的資源配分最適化
- Authors: Hyeonho Noh, Byonghyo Shim, Hyun Jong Yang,
- Abstract要約: 現在のソリューションはドメイン固有のアーキテクチャや技術に依存しており、制約付き最適化のための一般的なDLアプローチは未開発のままである。
本稿では,制約を順守しながら複雑な資源配分問題に対処するために,資源割当(LLM-RAO)のための大規模言語モデルを提案する。
LLM-RAO は従来の DL 法と比較して最大40% の性能向上を実現し,分析手法よりも80$% 向上した。
- 参考スコア(独自算出の注目度): 25.866960634041092
- License:
- Abstract: Deep learning (DL) has made notable progress in addressing complex radio access network control challenges that conventional analytic methods have struggled to solve. However, DL has shown limitations in solving constrained NP-hard problems often encountered in network optimization, such as those involving quality of service (QoS) or discrete variables like user indices. Current solutions rely on domain-specific architectures or heuristic techniques, and a general DL approach for constrained optimization remains undeveloped. Moreover, even minor changes in communication objectives demand time-consuming retraining, limiting their adaptability to dynamic environments where task objectives, constraints, environmental factors, and communication scenarios frequently change. To address these challenges, we propose a large language model for resource allocation optimizer (LLM-RAO), a novel approach that harnesses the capabilities of LLMs to address the complex resource allocation problem while adhering to QoS constraints. By employing a prompt-based tuning strategy to flexibly convey ever-changing task descriptions and requirements to the LLM, LLM-RAO demonstrates robust performance and seamless adaptability in dynamic environments without requiring extensive retraining. Simulation results reveal that LLM-RAO achieves up to a 40% performance enhancement compared to conventional DL methods and up to an $80$\% improvement over analytical approaches. Moreover, in scenarios with fluctuating communication objectives, LLM-RAO attains up to 2.9 times the performance of traditional DL-based networks.
- Abstract(参考訳): 深層学習(DL)は,従来の解析手法が解決に苦しむ複雑な無線アクセスネットワーク制御の課題に対処する上で,顕著な進歩を遂げてきた。
しかし、DLは、QoS(Quality of Service)やユーザインデックスのような離散変数など、ネットワーク最適化でしばしば発生する制約付きNPハード問題を解く際の制限を示してきた。
現在のソリューションはドメイン固有のアーキテクチャやヒューリスティックな手法に依存しており、制約付き最適化のための一般的なDLアプローチは未開発のままである。
さらに、コミュニケーション目的の小さな変更でさえ、タスク目標、制約、環境要因、コミュニケーションシナリオが頻繁に変化する動的な環境への適応性を制限するために、時間を要する再トレーニングを必要とします。
これらの課題に対処するために,資源割り当て最適化のための大規模言語モデル (LLM-RAO) を提案する。
絶え間なく変化するタスク記述と要件をLLMに柔軟に伝達するために、プロンプトベースのチューニング戦略を採用することで、LLM-RAOは広範なリトレーニングを必要とせずに、動的環境における堅牢なパフォーマンスとシームレスな適応性を示す。
シミュレーションの結果, LLM-RAOは従来のDL法と比較して最大40%の性能向上を実現し, 分析手法よりも80$\%向上した。
さらに、通信目的が変動するシナリオでは、LLM-RAOは従来のDLベースのネットワークの性能の2.9倍に達する。
関連論文リスト
- Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
大規模言語モデル(LLM)は、様々なタスクにまたがる顕著な機能を示している。
しかし、彼らは多段階の意思決定と環境フィードバックを必要とする問題に苦戦している。
人間のアノテーションを使わずに環境から報酬モデルを自動的に学習できるフレームワークを提案する。
論文 参考訳(メタデータ) (2025-02-17T18:49:25Z) - CAMEL: Continuous Action Masking Enabled by Large Language Models for Reinforcement Learning [3.602902292270654]
連続行動空間における強化学習(RL)は、非効率な探索や準最適解への収束のような永続的な課題に遭遇する。
我々は,LLM生成した準最適ポリシーをRLトレーニングパイプラインに統合する新しいフレームワークであるCAMELを提案する。
論文 参考訳(メタデータ) (2025-02-17T15:22:19Z) - AmoebaLLM: Constructing Any-Shape Large Language Models for Efficient and Instant Deployment [13.977849745488339]
AmoebaLLMは任意の形状の大規模言語モデルの即時導出を可能にする新しいフレームワークである。
AmoebaLLMは、様々なプラットフォームやアプリケーションに適した迅速なデプロイメントを著しく促進する。
論文 参考訳(メタデータ) (2024-11-15T22:02:28Z) - DRL Optimization Trajectory Generation via Wireless Network Intent-Guided Diffusion Models for Optimizing Resource Allocation [58.62766376631344]
本稿では、無線通信ネットワークの異なる状態変化に対応するために、カスタマイズされた無線ネットワークインテント(WNI-G)モデルを提案する。
大規模シミュレーションにより、動的通信システムにおけるスペクトル効率と従来のDRLモデルの変動の安定性が向上する。
論文 参考訳(メタデータ) (2024-10-18T14:04:38Z) - SparseLLM: Towards Global Pruning for Pre-trained Language Models [12.057369029549534]
本研究では,グローバルプルーニングプロセスを再定義する新しいフレームワークであるSparseLLMを提案する。
SparseLLMのアプローチは、LLMをモジュラ関数の連鎖として概念化し、問題の分解に補助変数を利用する。
高いスパーシティ・レシエーションにおいて、特に顕著なパフォーマンス向上を示す。
論文 参考訳(メタデータ) (2024-02-28T00:09:07Z) - Entropy-Regularized Token-Level Policy Optimization for Language Agent Reinforcement [67.1393112206885]
大規模言語モデル(LLM)は、対話的な意思決定タスクにおいてインテリジェントなエージェントとして期待されている。
本稿では,トークンレベルでのLLMの最適化に適したエントロピー拡張RL法である,エントロピー正規化トークンレベル最適化(ETPO)を導入する。
我々は,データサイエンスコード生成を多段階対話型タスクのシリーズとしてモデル化したシミュレーション環境におけるETPOの有効性を評価する。
論文 参考訳(メタデータ) (2024-02-09T07:45:26Z) - Self-Sustaining Multiple Access with Continual Deep Reinforcement
Learning for Dynamic Metaverse Applications [17.436875530809946]
Metaverseは,さまざまな世界で構成される仮想環境の構築を目的とした,新たなパラダイムだ。
このような動的で複雑なシナリオに対処するためには、自己維持戦略を採用する方法が考えられる。
本稿では,知的エージェントのスループットを最大化するために,マルチチャネル環境におけるマルチアクセスの問題について検討する。
論文 参考訳(メタデータ) (2023-09-18T22:02:47Z) - Adaptive Resource Allocation for Virtualized Base Stations in O-RAN with Online Learning [55.08287089554127]
基地局(vBS)を備えたオープンラジオアクセスネットワークシステムは、柔軟性の向上、コスト削減、ベンダーの多様性、相互運用性のメリットを提供する。
本研究では,予期せぬ「混み合う」環境下であっても,効率的なスループットとvBSエネルギー消費のバランスをとるオンライン学習アルゴリズムを提案する。
提案手法は, 課題のある環境においても, 平均最適性ギャップをゼロにすることで, サブ線形後悔を実現する。
論文 参考訳(メタデータ) (2023-09-04T17:30:21Z) - Learning Resilient Radio Resource Management Policies with Graph Neural
Networks [124.89036526192268]
我々は、ユーザ当たりの最小容量制約でレジリエントな無線リソース管理問題を定式化する。
有限個のパラメータ集合を用いてユーザ選択と電力制御ポリシーをパラメータ化できることを示す。
このような適応により,提案手法は平均レートと5番目のパーセンタイルレートとの良好なトレードオフを実現する。
論文 参考訳(メタデータ) (2022-03-07T19:40:39Z) - CLARA: A Constrained Reinforcement Learning Based Resource Allocation
Framework for Network Slicing [19.990451009223573]
ネットワークスライシングは,5Gおよび将来のネットワークにおける資源利用のための有望なソリューションとして提案されている。
モデルや隠れ構造を知らずにCMDP(Constrained Markov Decision Process)として問題を定式化する。
本稿では、制約付き強化LeArningに基づくリソース割当アルゴリズムであるCLARAを用いて、この問題を解決することを提案する。
論文 参考訳(メタデータ) (2021-11-16T11:54:09Z) - Learning to Continuously Optimize Wireless Resource in a Dynamic
Environment: A Bilevel Optimization Perspective [52.497514255040514]
この研究は、データ駆動メソッドが動的環境でリソース割り当て戦略を継続的に学び、最適化することを可能にする新しいアプローチを開発しています。
学習モデルが新たなエピソードに段階的に適応できるように、連続学習の概念を無線システム設計に組み込むことを提案する。
我々の設計は、異なるデータサンプルにまたがる公平性を保証する、新しい二段階最適化定式化に基づいている。
論文 参考訳(メタデータ) (2021-05-03T07:23:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。