NeuroSim V1.5: Improved Software Backbone for Benchmarking Compute-in-Memory Accelerators with Device and Circuit-level Non-idealities
- URL: http://arxiv.org/abs/2505.02314v1
- Date: Mon, 05 May 2025 02:07:04 GMT
- Title: NeuroSim V1.5: Improved Software Backbone for Benchmarking Compute-in-Memory Accelerators with Device and Circuit-level Non-idealities
- Authors: James Read, Ming-Yen Lee, Wei-Hsing Huang, Yuan-Chun Luo, Anni Lu, Shimeng Yu,
- Abstract summary: We present NeuroSim V1.5, which introduces key advances in device- and circuit-level non-idealities.<n>NeuroSim V1.5 advances the design and validation of next-generation ACIM accelerators.<n>All NeuroSim versions are available open-source at https://github.com/neurosim/NeuroSim.
- Score: 2.141889595429907
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The exponential growth of artificial intelligence (AI) applications has exposed the inefficiency of conventional von Neumann architectures, where frequent data transfers between compute units and memory create significant energy and latency bottlenecks. Analog Computing-in-Memory (ACIM) addresses this challenge by performing multiply-accumulate (MAC) operations directly in the memory arrays, substantially reducing data movement. However, designing robust ACIM accelerators requires accurate modeling of device- and circuit-level non-idealities. In this work, we present NeuroSim V1.5, introducing several key advances: (1) seamless integration with TensorRT's post-training quantization flow enabling support for more neural networks including transformers, (2) a flexible noise injection methodology built on pre-characterized statistical models, making it straightforward to incorporate data from SPICE simulations or silicon measurements, (3) expanded device support including emerging non-volatile capacitive memories, and (4) up to 6.5x faster runtime than NeuroSim V1.4 through optimized behavioral simulation. The combination of these capabilities uniquely enables systematic design space exploration across both accuracy and hardware efficiency metrics. Through multiple case studies, we demonstrate optimization of critical design parameters while maintaining network accuracy. By bridging high-fidelity noise modeling with efficient simulation, NeuroSim V1.5 advances the design and validation of next-generation ACIM accelerators. All NeuroSim versions are available open-source at https://github.com/neurosim/NeuroSim.
Related papers
- OmniFluids: Unified Physics Pre-trained Modeling of Fluid Dynamics [25.066485418709114]
We introduce OmniFluids, a unified physics pre-trained operator learning framework.<n>It integrates physics-only pre-training, coarse-grid operator distillation, and few-shot fine-tuning.<n>It significantly outperforms state-of-the-art AI-driven methods in flow field reconstruction and turbulence statistics accuracy.
arXiv Detail & Related papers (2025-06-12T16:23:02Z) - The Eclipsing Binaries via Artificial Intelligence. II. Need for Speed in PHOEBE Forward Models [0.0]
In modern astronomy, the quantity of data collected has vastly exceeded the capacity for manual analysis.<n> AI can optimize simulation codes where computational bottlenecks arise from the time required to generate forward models.<n>We present a fully connected feedforward artificial neural network (ANN) trained on a dataset of over one million synthetic light curves.
arXiv Detail & Related papers (2024-12-16T15:00:15Z) - Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
Neuromorphic computing uses spiking neural networks (SNNs) to perform inference tasks.<n> embedding a small payload within each spike exchanged between spiking neurons can enhance inference accuracy without increasing energy consumption.<n> split computing - where an SNN is partitioned across two devices - is a promising solution.<n>This paper presents the first comprehensive study of a neuromorphic wireless split computing architecture that employs multi-level SNNs.
arXiv Detail & Related papers (2024-11-07T14:08:35Z) - A Remedy to Compute-in-Memory with Dynamic Random Access Memory: 1FeFET-1C Technology for Neuro-Symbolic AI [14.486320458474536]
Neuro-symbolic artificial intelligence (AI) excels at learning from noisy and generalized patterns, conducting logical inferences, and providing interpretable reasoning.
Current hardware struggles to accommodate applications requiring dynamic resource allocation between 'neuro' and'symbolic' components.
We propose a ferroelectric charge-domain compute-in-memory (CiM) array as the foundational processing element for neuro-symbolic AI.
arXiv Detail & Related papers (2024-10-20T05:52:03Z) - A Realistic Simulation Framework for Analog/Digital Neuromorphic Architectures [73.65190161312555]
ARCANA is a software spiking neural network simulator designed to account for the properties of mixed-signal neuromorphic circuits.<n>We show how the results obtained provide a reliable estimate of the behavior of the spiking neural network trained in software, once deployed in hardware.
arXiv Detail & Related papers (2024-09-23T11:16:46Z) - Resistive Memory-based Neural Differential Equation Solver for Score-based Diffusion Model [55.116403765330084]
Current AIGC methods, such as score-based diffusion, are still deficient in terms of rapidity and efficiency.
We propose a time-continuous and analog in-memory neural differential equation solver for score-based diffusion.
We experimentally validate our solution with 180 nm resistive memory in-memory computing macros.
arXiv Detail & Related papers (2024-04-08T16:34:35Z) - Pruning random resistive memory for optimizing analogue AI [54.21621702814583]
AI models present unprecedented challenges to energy consumption and environmental sustainability.
One promising solution is to revisit analogue computing, a technique that predates digital computing.
Here, we report a universal solution, software-hardware co-design using structural plasticity-inspired edge pruning.
arXiv Detail & Related papers (2023-11-13T08:59:01Z) - CIMulator: A Comprehensive Simulation Platform for Computing-In-Memory
Circuit Macros with Low Bit-Width and Real Memory Materials [0.5325753548715747]
This paper presents a simulation platform, namely CIMulator, for quantifying the efficacy of various synaptic devices in neuromorphic accelerators.
Non-volatile memory devices, such as resistive random-access memory, ferroelectric field-effect transistor, and volatile static random-access memory devices, can be selected as synaptic devices.
A multilayer perceptron and convolutional neural networks (CNNs), such as LeNet-5, VGG-16, and a custom CNN named C4W-1, are simulated to evaluate the effects of these synaptic devices on the training and inference outcomes.
arXiv Detail & Related papers (2023-06-26T12:36:07Z) - The Expressive Leaky Memory Neuron: an Efficient and Expressive Phenomenological Neuron Model Can Solve Long-Horizon Tasks [64.08042492426992]
We introduce the Expressive Memory (ELM) neuron model, a biologically inspired model of a cortical neuron.
Our ELM neuron can accurately match the aforementioned input-output relationship with under ten thousand trainable parameters.
We evaluate it on various tasks with demanding temporal structures, including the Long Range Arena (LRA) datasets.
arXiv Detail & Related papers (2023-06-14T13:34:13Z) - Ultra-Low-Power FDSOI Neural Circuits for Extreme-Edge Neuromorphic
Intelligence [2.6199663901387997]
In-memory computing mixed-signal neuromorphic architectures provide promising ultra-low-power solutions for edge-computing sensory-processing applications.
We present a set of mixed-signal analog/digital circuits that exploit the features of advanced Fully-Depleted Silicon on Insulator (FDSOI) integration processes.
arXiv Detail & Related papers (2020-06-25T09:31:29Z) - One-step regression and classification with crosspoint resistive memory
arrays [62.997667081978825]
High speed, low energy computing machines are in demand to enable real-time artificial intelligence at the edge.
One-step learning is supported by simulations of the prediction of the cost of a house in Boston and the training of a 2-layer neural network for MNIST digit recognition.
Results are all obtained in one computational step, thanks to the physical, parallel, and analog computing within the crosspoint array.
arXiv Detail & Related papers (2020-05-05T08:00:07Z) - DNN+NeuroSim V2.0: An End-to-End Benchmarking Framework for
Compute-in-Memory Accelerators for On-chip Training [4.555081317066413]
NeuroSim is an integrated framework to benchmark compute-in-memory (CIM) accelerators for deep neural networks.
A python wrapper is developed to interface NeuroSim with a popular machine learning platform: Pytorch.
arXiv Detail & Related papers (2020-03-13T20:20:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.