A Remedy to Compute-in-Memory with Dynamic Random Access Memory: 1FeFET-1C Technology for Neuro-Symbolic AI
- URL: http://arxiv.org/abs/2410.15296v1
- Date: Sun, 20 Oct 2024 05:52:03 GMT
- Title: A Remedy to Compute-in-Memory with Dynamic Random Access Memory: 1FeFET-1C Technology for Neuro-Symbolic AI
- Authors: Xunzhao Yin, Hamza Errahmouni Barkam, Franz Müller, Yuxiao Jiang, Mohsen Imani, Sukhrob Abdulazhanov, Alptekin Vardar, Nellie Laleni, Zijian Zhao, Jiahui Duan, Zhiguo Shi, Siddharth Joshi, Michael Niemier, Xiaobo Sharon Hu, Cheng Zhuo, Thomas Kämpfe, Kai Ni,
- Abstract summary: Neuro-symbolic artificial intelligence (AI) excels at learning from noisy and generalized patterns, conducting logical inferences, and providing interpretable reasoning.
Current hardware struggles to accommodate applications requiring dynamic resource allocation between 'neuro' and'symbolic' components.
We propose a ferroelectric charge-domain compute-in-memory (CiM) array as the foundational processing element for neuro-symbolic AI.
- Score: 14.486320458474536
- License:
- Abstract: Neuro-symbolic artificial intelligence (AI) excels at learning from noisy and generalized patterns, conducting logical inferences, and providing interpretable reasoning. Comprising a 'neuro' component for feature extraction and a 'symbolic' component for decision-making, neuro-symbolic AI has yet to fully benefit from efficient hardware accelerators. Additionally, current hardware struggles to accommodate applications requiring dynamic resource allocation between these two components. To address these challenges-and mitigate the typical data-transfer bottleneck of classical Von Neumann architectures-we propose a ferroelectric charge-domain compute-in-memory (CiM) array as the foundational processing element for neuro-symbolic AI. This array seamlessly handles both the critical multiply-accumulate (MAC) operations of the 'neuro' workload and the parallel associative search operations of the 'symbolic' workload. To enable this approach, we introduce an innovative 1FeFET-1C cell, combining a ferroelectric field-effect transistor (FeFET) with a capacitor. This design, overcomes the destructive sensing limitations of DRAM in CiM applications, while capable of capitalizing decades of DRAM expertise with a similar cell structure as DRAM, achieves high immunity against FeFET variation-crucial for neuro-symbolic AI-and demonstrates superior energy efficiency. The functionalities of our design have been successfully validated through SPICE simulations and prototype fabrication and testing. Our hardware platform has been benchmarked in executing typical neuro-symbolic AI reasoning tasks, showing over 2x improvement in latency and 1000x improvement in energy efficiency compared to GPU-based implementations.
Related papers
- A Realistic Simulation Framework for Analog/Digital Neuromorphic Architectures [73.65190161312555]
ARCANA is a spiking neural network simulator designed to account for the properties of mixed-signal neuromorphic circuits.
We show how the results obtained provide a reliable estimate of the behavior of the spiking neural network trained in software.
arXiv Detail & Related papers (2024-09-23T11:16:46Z) - Neuromorphic Circuit Simulation with Memristors: Design and Evaluation Using MemTorch for MNIST and CIFAR [0.4077787659104315]
This study evaluates the feasibility of using memristors for in-memory processing by constructing and training three digital convolutional neural networks.
Conversion of these networks into memristive systems was performed using Memtorch.
The simulations, conducted under ideal conditions, revealed minimal precision losses of nearly 1% during inference.
arXiv Detail & Related papers (2024-07-18T11:30:33Z) - ARTEMIS: A Mixed Analog-Stochastic In-DRAM Accelerator for Transformer Neural Networks [2.9699290794642366]
ARTEMIS is a mixed analog-stochastic in-DRAM accelerator for transformer models.
Our analysis indicates that ARTEMIS exhibits at least 3.0x speedup, 1.8x lower energy, and 1.9x better energy efficiency compared to GPU, TPU, CPU, and state-of-the-art PIM transformer hardware accelerators.
arXiv Detail & Related papers (2024-07-17T15:08:14Z) - OPIMA: Optical Processing-In-Memory for Convolutional Neural Network Acceleration [5.0389804644646174]
We introduce OPIMA, a processing-in-memory (PIM)-based machine learning accelerator.
PIM struggles to achieve high throughput and energy efficiency due to internal data movement bottlenecks.
We show that OPIMA can achieve 2.98x higher throughput and 137x better energy efficiency than the best-known prior work.
arXiv Detail & Related papers (2024-07-11T06:12:04Z) - Efficient and accurate neural field reconstruction using resistive memory [52.68088466453264]
Traditional signal reconstruction methods on digital computers face both software and hardware challenges.
We propose a systematic approach with software-hardware co-optimizations for signal reconstruction from sparse inputs.
This work advances the AI-driven signal restoration technology and paves the way for future efficient and robust medical AI and 3D vision applications.
arXiv Detail & Related papers (2024-04-15T09:33:09Z) - Resistive Memory-based Neural Differential Equation Solver for Score-based Diffusion Model [55.116403765330084]
Current AIGC methods, such as score-based diffusion, are still deficient in terms of rapidity and efficiency.
We propose a time-continuous and analog in-memory neural differential equation solver for score-based diffusion.
We experimentally validate our solution with 180 nm resistive memory in-memory computing macros.
arXiv Detail & Related papers (2024-04-08T16:34:35Z) - Single Neuromorphic Memristor closely Emulates Multiple Synaptic
Mechanisms for Energy Efficient Neural Networks [71.79257685917058]
We demonstrate memristive nano-devices based on SrTiO3 that inherently emulate all these synaptic functions.
These memristors operate in a non-filamentary, low conductance regime, which enables stable and energy efficient operation.
arXiv Detail & Related papers (2024-02-26T15:01:54Z) - Experimental demonstration of magnetic tunnel junction-based computational random-access memory [4.640906373267124]
"Computational random-access memory (CRAM) has emerged to address this fundamental limitation"
CRAM performs logic operations directly using the memory cells themselves, without having the data ever leave the memory.
Technology could have a significant impact on power- and energy-demanding applications of machine intelligence.
arXiv Detail & Related papers (2023-12-21T19:28:54Z) - Mapping and Validating a Point Neuron Model on Intel's Neuromorphic
Hardware Loihi [77.34726150561087]
We investigate the potential of Intel's fifth generation neuromorphic chip - Loihi'
Loihi is based on the novel idea of Spiking Neural Networks (SNNs) emulating the neurons in the brain.
We find that Loihi replicates classical simulations very efficiently and scales notably well in terms of both time and energy performance as the networks get larger.
arXiv Detail & Related papers (2021-09-22T16:52:51Z) - Ultra-Low-Power FDSOI Neural Circuits for Extreme-Edge Neuromorphic
Intelligence [2.6199663901387997]
In-memory computing mixed-signal neuromorphic architectures provide promising ultra-low-power solutions for edge-computing sensory-processing applications.
We present a set of mixed-signal analog/digital circuits that exploit the features of advanced Fully-Depleted Silicon on Insulator (FDSOI) integration processes.
arXiv Detail & Related papers (2020-06-25T09:31:29Z) - One-step regression and classification with crosspoint resistive memory
arrays [62.997667081978825]
High speed, low energy computing machines are in demand to enable real-time artificial intelligence at the edge.
One-step learning is supported by simulations of the prediction of the cost of a house in Boston and the training of a 2-layer neural network for MNIST digit recognition.
Results are all obtained in one computational step, thanks to the physical, parallel, and analog computing within the crosspoint array.
arXiv Detail & Related papers (2020-05-05T08:00:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.