論文の概要: EntroLLM: Entropy Encoded Weight Compression for Efficient Large Language Model Inference on Edge Devices
- arxiv url: http://arxiv.org/abs/2505.02380v1
- Date: Mon, 05 May 2025 05:42:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-06 18:49:35.568345
- Title: EntroLLM: Entropy Encoded Weight Compression for Efficient Large Language Model Inference on Edge Devices
- Title(参考訳): EntroLLM:エッジデバイス上での効率的な大言語モデル推論のためのエントロピー符号化重み圧縮
- Authors: Arnab Sanyal, Prithwish Mukherjee, Gourav Datta, Sandeep P. Chinchali,
- Abstract要約: 大きな言語モデル(LLM)は、様々なタスクにまたがる例外的なパフォーマンスを示すが、その大きなストレージと計算要求は、エッジデバイスへのデプロイメントを制限している。
本稿では,エントロピー符号化と混合量子化を統合した新しい圧縮フレームワークEntroLLMを提案する。
- 参考スコア(独自算出の注目度): 3.297182592932918
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) demonstrate exceptional performance across various tasks, but their large storage and computational requirements constrain their deployment on edge devices. To address this, we propose EntroLLM, a novel compression framework that integrates mixed quantization with entropy coding to reduce storage overhead while maintaining model accuracy. Our method applies a layer-wise mixed quantization scheme - choosing between symmetric and asymmetric quantization based on individual layer weight distributions - to optimize compressibility. We then employ Huffman encoding for lossless compression of the quantized weights, significantly reducing memory bandwidth requirements. Furthermore, we introduce parallel Huffman decoding, which enables efficient retrieval of encoded weights during inference, ensuring minimal latency impact. Our experiments on edge-compatible LLMs, including smolLM-1.7B-Instruct, phi3-mini-4k-Instruct, and mistral-7B-Instruct, demonstrate that EntroLLM achieves up to $30%$ storage reduction compared to uint8 models and up to $65%$ storage reduction compared to uint4 models, while preserving perplexity and accuracy, on language benchmark tasks. We further show that our method enables $31.9%$ - $146.6%$ faster inference throughput on memory-bandwidth-limited edge devices, such as NVIDIA Jetson P3450, by reducing the required data movement. The proposed approach requires no additional re-training and is fully compatible with existing post-training quantization methods, making it a practical solution for edge LLMs.
- Abstract(参考訳): 大きな言語モデル(LLM)は、様々なタスクにまたがる例外的なパフォーマンスを示すが、その大きなストレージと計算要求は、エッジデバイスへのデプロイメントを制限している。
そこで本研究では,エントロピー符号化と混合量子化を統合した新しい圧縮フレームワークEntroLLMを提案する。
本手法では, 各層重み分布に基づく対称量子化と非対称量子化を分離し, 圧縮性を最適化する。
次に、量子化重みのロスレス圧縮にHuffmanエンコーディングを使用し、メモリ帯域幅の要求を大幅に削減する。
さらに、並列Huffmanデコーディングを導入し、推論中にエンコードされた重みの効率的な検索を可能にし、レイテンシへの影響を最小限に抑える。
smolLM-1.7B-Instruct, phi3-mini-4k-Instruct, mistral-7B-Instruct などのエッジ互換 LLM に関する実験により, EntroLLM は uint8 モデルに比べて最大30% のストレージ削減, uint4 モデルより最大65% のストレージ削減を実現し, 言語ベンチマークタスクでは難易度と精度を保ちながら, 最大65% のストレージ削減を実現した。
さらに,NVIDIA Jetson P3450などのメモリ帯域幅制限エッジデバイスにおいて,必要なデータ移動を削減して,11.9%~146.6%の高速推論スループットを実現する方法を提案する。
提案手法は、追加のトレーニングを必要とせず、既存のトレーニング後の量子化手法と完全に互換性があり、エッジLLMの実用的な解である。
関連論文リスト
- When Compression Meets Model Compression: Memory-Efficient Double Compression for Large Language Models [12.687035979970194]
本稿では,量子化後の大規模言語モデル(LLM)を圧縮するフレームワークを提案する。
量子化に先立ってモデルパラメータを再スケーリングすることにより, モデル重量圧縮性を高めるために, 圧縮対応量子化法が最初に提案され, さらにさらに改良するプルーニング法が提案されている。
圧縮されたモデルによる推論は、精度と推論速度の損失を無視して、メモリサイズを40%削減できることを示す実験である。
論文 参考訳(メタデータ) (2025-02-21T13:11:22Z) - SLiM: One-shot Quantization and Sparsity with Low-rank Approximation for LLM Weight Compression [7.6131620435684875]
SLIMは新しいワンショット圧縮フレームワークで、ハードウェアフレンドリーな量子化、スパーシティ、低ランク近似を統合する。
SLIMはモデル精度を最大5.66%(LLaMA-2-7B)に改善し、4ビットの重み量子化で2:4の間隔で計算し、従来の手法より優れている。
また,小調整なしでSLIMと比較して,最大1.66%(LLaMA-2-13B)の精度向上を図ったPEFTレシピを提案する。
論文 参考訳(メタデータ) (2024-10-12T18:36:07Z) - FineQuant: Unlocking Efficiency with Fine-Grained Weight-Only
Quantization for LLMs [9.072821427818557]
大規模言語モデル(LLM)は、様々な言語タスクで最先端のパフォーマンスを達成しているが、実用的なデプロイメントには課題がある。
メモリ消費を削減し,LLMの推論を高速化する,効率的な重みのみの量子化法を提案する。
我々は,OPT-175Bや内部MoEモデルのような大規模オープンソースモデルに対するアプローチを評価し,スループットを最大3.65倍に向上しながら,最小限の精度の損失を示す。
論文 参考訳(メタデータ) (2023-08-16T23:57:41Z) - SqueezeLLM: Dense-and-Sparse Quantization [80.32162537942138]
LLMにおける生成推論の主なボトルネックは、単一のバッチ推論のための計算ではなく、メモリ帯域幅である。
学習後量子化フレームワークであるSqueezeLLMを導入し、最大3ビットの超低精度でのロスレス圧縮を実現する。
本フレームワークは,2次情報に基づく最適ビット精度割当を探索する感度ベース非一様量子化法と,2次情報に基づくDense-and-Sparse分解法と,2次情報量割当値と感度重み値を効率的にスパース形式で格納するDense-and-Sparse分解法である。
論文 参考訳(メタデータ) (2023-06-13T08:57:54Z) - SpQR: A Sparse-Quantized Representation for Near-Lossless LLM Weight
Compression [76.73007709690306]
Sparse-Quantized Representation (SpQR) は,新しい圧縮フォーマットと量子化技術である。
SpQRは、高精度なLLaMAとFalcon LLMのパープレキシティにおいて、1%未満の相対的精度の損失を達成している。
これにより、1台の24GBのコンシューマGPU上で33BパラメータのLSMを実行でき、15%のスピードアップでパフォーマンスの劣化は発生しない。
論文 参考訳(メタデータ) (2023-06-05T17:53:28Z) - Training with Quantization Noise for Extreme Model Compression [57.51832088938618]
与えられたモデルサイズに対する精度を最大化しながら、コンパクトなモデルを作成するという問題に取り組む。
標準的な解決策は、トレーニング中に重みが定量化され、勾配がストレート・スルー推定器に近似される量子化意識訓練(Quantization Aware Training)でネットワークをトレーニングすることである。
本稿では, この手法を, 極端な圧縮法を用いて, int8 の固定点量子化を超えて機能するように拡張する。
論文 参考訳(メタデータ) (2020-04-15T20:10:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。