論文の概要: SLiM: One-shot Quantization and Sparsity with Low-rank Approximation for LLM Weight Compression
- arxiv url: http://arxiv.org/abs/2410.09615v2
- Date: Tue, 04 Feb 2025 01:30:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-05 14:55:10.593150
- Title: SLiM: One-shot Quantization and Sparsity with Low-rank Approximation for LLM Weight Compression
- Title(参考訳): SLiM:LLM重み圧縮のための低ランク近似によるワンショット量子化とスパシティ
- Authors: Mohammad Mozaffari, Amir Yazdanbakhsh, Maryam Mehri Dehnavi,
- Abstract要約: SLIMは新しいワンショット圧縮フレームワークで、ハードウェアフレンドリーな量子化、スパーシティ、低ランク近似を統合する。
SLIMはモデル精度を最大5.66%(LLaMA-2-7B)に改善し、4ビットの重み量子化で2:4の間隔で計算し、従来の手法より優れている。
また,小調整なしでSLIMと比較して,最大1.66%(LLaMA-2-13B)の精度向上を図ったPEFTレシピを提案する。
- 参考スコア(独自算出の注目度): 7.6131620435684875
- License:
- Abstract: Conventional model compression techniques for LLMs address high memory consumption and slow inference challenges but typically require computationally expensive retraining to preserve accuracy. In contrast, one-shot compression methods eliminate retraining cost, but struggle to achieve accuracy comparable to dense models. This paper presents SLIM, a new one-shot compression framework that holistically integrates hardware-friendly quantization, sparsity, and low-rank approximation into a unified process. First, we formulate the quantization process using a probabilistic approach (SLIM-Quant) that enables us to apply uniform quantization. Then, we use an existing one-shot pruning method to apply semi-structured sparsity on top of the quantized weights. Finally, to compensate for the introduced aggregated quantization and sparsity error, we use a novel saliency function with unique invertible and additive features that enables us to mathematically compute the value of low-rank adapters. SLIM improves model accuracy by up to 5.66% (LLaMA-2-7B) for 2:4 sparsity with 4-bit weight quantization, outperforming prior methods. Models compressed with SLIM achieve up to 3.78x and 3.75x layer-wise speedup on Nvidia RTX3060 and A100 GPUs, respectively. We also propose an optional PEFT recipe that further improves accuracy by up to 1.66% (LLaMA-2-13B) compared to SLIM without fine-tuning
- Abstract(参考訳): LLMの従来のモデル圧縮技術は、高いメモリ消費と遅い推論の問題に対処するが、通常、正確性を維持するために計算コストのかかる再訓練を必要とする。
対照的に、ワンショット圧縮法は再訓練コストを削減しているが、高密度モデルに匹敵する精度を達成するのに苦労している。
本稿では,ハードウェアフレンドリな量子化,空間性,低ランク近似を統一されたプロセスに統合する,新しいワンショット圧縮フレームワークSLIMを提案する。
まず、確率的アプローチ(SLIM-Quant)を用いて量子化過程を定式化し、均一な量子化を適用する。
次に,既存のワンショットプルーニング法を用いて,量子化重みの上に半構造化された空間を印加する。
最後に、導入した集約量子化と空間誤差を補うために、低ランクアダプタの値の数学的計算を可能にする、ユニークな可逆的かつ付加的な特徴を持つ新しいサリエンシ関数を用いる。
SLIMはモデル精度を最大5.66%(LLaMA-2-7B)まで改善し、4ビットの重み量子化で2:4の間隔で計算し、従来の手法より優れている。
SLIMで圧縮されたモデルは、それぞれNvidia RTX3060とA100 GPUで3.78倍と3.75倍のスピードアップを達成する。
また,詳細な調整を行わないSLIMと比較して,最大1.66%(LLaMA-2-13B)の精度向上を図ったPEFTレシピを提案する。
関連論文リスト
- Pushing the Limits of Large Language Model Quantization via the Linearity Theorem [71.3332971315821]
本稿では,階層的$ell$再構成誤差と量子化によるモデルパープレキシティ増加との直接的な関係を確立する「線形定理」を提案する。
この知見は,(1)アダマール回転とHIGGSと呼ばれるMSE最適格子を用いた単純なデータフリーLCM量子化法,(2)非一様層ごとの量子化レベルを求める問題に対する最適解の2つの新しい応用を可能にする。
論文 参考訳(メタデータ) (2024-11-26T15:35:44Z) - Zeroth-Order Fine-Tuning of LLMs in Random Subspaces [66.27334633749734]
言語モデルのサイズが大きくなるにつれて、バックプロパゲーションに対するメモリ要求が増加する。
Zeroth-order (ZOZO) 最適化手法はメモリ効率の代替手段を提供する。
本稿では,SubZeroがファインチューニングを強化し,通常のZOZO手法と比較して高速な結果が得られることを示す。
論文 参考訳(メタデータ) (2024-10-11T17:01:43Z) - Pruning Large Language Models with Semi-Structural Adaptive Sparse Training [17.381160429641316]
適応スパーストレーナー(AST)と呼ばれるリトレーニングによる半構造化スパースモデルのプルーニングパイプラインを提案する。
ASTは、モデルがトレーニングプロセスを通して適応的にマスクを選択することを可能にし、マスキング重みに減衰を施すことにより、密度の高いモデルをスパースモデルに変換する。
本研究は,半構造化されたスパース言語モデルの実現可能性を示し,高度に圧縮されたモデルを実現するための新しい手法を提案する。
論文 参考訳(メタデータ) (2024-07-30T06:33:44Z) - SliM-LLM: Salience-Driven Mixed-Precision Quantization for Large Language Models [67.67135738642547]
後学習量子化(PTQ)は、大規模言語モデル(LLM)において研究される強力な圧縮手法である。
既存のPTQ法は、特に4ビット幅以下では、精度と効率の点で理想的ではない。
本稿では,LSM,すなわちSliM-LLMに対するSalience-Driven Mixed-Precision Quantizationスキームを提案する。
論文 参考訳(メタデータ) (2024-05-23T16:21:48Z) - OneBit: Towards Extremely Low-bit Large Language Models [66.29839811207617]
本稿では, LLMの重量行列を1ビットに大胆に定量化し, LLMの極低ビット幅展開への道を開く。
実験によると、OneBitは(LLaMAモデルの非量子化性能の少なくとも81%)優れたパフォーマンスを、堅牢なトレーニングプロセスで達成している。
論文 参考訳(メタデータ) (2024-02-17T14:26:57Z) - FineQuant: Unlocking Efficiency with Fine-Grained Weight-Only
Quantization for LLMs [9.072821427818557]
大規模言語モデル(LLM)は、様々な言語タスクで最先端のパフォーマンスを達成しているが、実用的なデプロイメントには課題がある。
メモリ消費を削減し,LLMの推論を高速化する,効率的な重みのみの量子化法を提案する。
我々は,OPT-175Bや内部MoEモデルのような大規模オープンソースモデルに対するアプローチを評価し,スループットを最大3.65倍に向上しながら,最小限の精度の損失を示す。
論文 参考訳(メタデータ) (2023-08-16T23:57:41Z) - SqueezeLLM: Dense-and-Sparse Quantization [80.32162537942138]
LLMにおける生成推論の主なボトルネックは、単一のバッチ推論のための計算ではなく、メモリ帯域幅である。
学習後量子化フレームワークであるSqueezeLLMを導入し、最大3ビットの超低精度でのロスレス圧縮を実現する。
本フレームワークは,2次情報に基づく最適ビット精度割当を探索する感度ベース非一様量子化法と,2次情報に基づくDense-and-Sparse分解法と,2次情報量割当値と感度重み値を効率的にスパース形式で格納するDense-and-Sparse分解法である。
論文 参考訳(メタデータ) (2023-06-13T08:57:54Z) - SpQR: A Sparse-Quantized Representation for Near-Lossless LLM Weight
Compression [76.73007709690306]
Sparse-Quantized Representation (SpQR) は,新しい圧縮フォーマットと量子化技術である。
SpQRは、高精度なLLaMAとFalcon LLMのパープレキシティにおいて、1%未満の相対的精度の損失を達成している。
これにより、1台の24GBのコンシューマGPU上で33BパラメータのLSMを実行でき、15%のスピードアップでパフォーマンスの劣化は発生しない。
論文 参考訳(メタデータ) (2023-06-05T17:53:28Z) - Memory-Efficient Fine-Tuning of Compressed Large Language Models via
sub-4-bit Integer Quantization [27.79783067245817]
大規模言語モデル(LLM)は、高いメモリ要求と計算コストのため、微調整とデプロイメントの課題に直面している。
本稿では,PEFT と量子化 LLM の利点を組み合わせた簡易かつ効果的な手法である PEQA (Efficient Adaptation and Quantization-aware) を提案する。
論文 参考訳(メタデータ) (2023-05-23T15:20:01Z) - LUT-GEMM: Quantized Matrix Multiplication based on LUTs for Efficient Inference in Large-Scale Generative Language Models [9.727062803700264]
量子化行列乗算のための効率的なカーネルであるLUT-GEMMを紹介する。
LUT-GEMMは資源集約化プロセスを取り除き、計算コストを削減する。
我々は,3ビット量子化を用いたOPT-175Bモデルに適用した場合,LUT-GEMMはトークン生成遅延を大幅に高速化することを示した。
論文 参考訳(メタデータ) (2022-06-20T03:48:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。