AI Standardized Patient Improves Human Conversations in Advanced Cancer Care
- URL: http://arxiv.org/abs/2505.02694v1
- Date: Mon, 05 May 2025 14:44:17 GMT
- Title: AI Standardized Patient Improves Human Conversations in Advanced Cancer Care
- Authors: Kurtis Haut, Masum Hasan, Thomas Carroll, Ronald Epstein, Taylan Sen, Ehsan Hoque,
- Abstract summary: SOPHIE is an AI-powered standardized patient simulation and automated feedback system.<n>In a randomized control study with healthcare students and professionals, SOPHIE users demonstrated significant improvement across three critical SIC domains: Empathize, Be Explicit, and Empower.
- Score: 1.5631689124757961
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Serious illness communication (SIC) in end-of-life care faces challenges such as emotional stress, cultural barriers, and balancing hope with honesty. Despite its importance, one of the few available ways for clinicians to practice SIC is with standardized patients, which is expensive, time-consuming, and inflexible. In this paper, we present SOPHIE, an AI-powered standardized patient simulation and automated feedback system. SOPHIE combines large language models (LLMs), a lifelike virtual avatar, and automated, personalized feedback based on clinical literature to provide remote, on-demand SIC training. In a randomized control study with healthcare students and professionals, SOPHIE users demonstrated significant improvement across three critical SIC domains: Empathize, Be Explicit, and Empower. These results suggest that AI-driven tools can enhance complex interpersonal communication skills, offering scalable, accessible solutions to address a critical gap in clinician education.
Related papers
- Designing AI Tools for Clinical Care Teams to Support Serious Illness Conversations with Older Adults in the Emergency Department [53.52248484568777]
The work contributes empirical understanding of ED-based serious illness conversations and provides design considerations for AI in high-stakes clinical environments.<n>We conducted interviews with two domain experts and nine ED clinical care team members.<n>We characterized a four-phase serious illness conversation workflow (identification, preparation, conduction, documentation) and identified key needs and challenges at each stage.<n>We present design guidelines for AI tools supporting SIC that fit within existing clinical practices.
arXiv Detail & Related papers (2025-05-30T21:15:57Z) - MedSimAI: Simulation and Formative Feedback Generation to Enhance Deliberate Practice in Medical Education [0.5068418799871723]
MedSimAI is an AI-powered simulation platform that enables deliberate practice, self-regulated learning, and automated assessment through interactive patient encounters.<n>In a pilot study with 104 first-year medical students, we examined engagement, conversation patterns, and user perceptions.<n>Students found MedSimAI beneficial for repeated, realistic patient-history practice.
arXiv Detail & Related papers (2025-03-01T00:51:55Z) - Towards Privacy-aware Mental Health AI Models: Advances, Challenges, and Opportunities [61.633126163190724]
Mental illness is a widespread and debilitating condition with substantial societal and personal costs.<n>Recent advances in Artificial Intelligence (AI) hold great potential for recognizing and addressing conditions such as depression, anxiety disorder, bipolar disorder, schizophrenia, and post-traumatic stress disorder.<n>Privacy concerns, including the risk of sensitive data leakage from datasets and trained models, remain a critical barrier to deploying these AI systems in real-world clinical settings.
arXiv Detail & Related papers (2025-02-01T15:10:02Z) - Towards Next-Generation Medical Agent: How o1 is Reshaping Decision-Making in Medical Scenarios [46.729092855387165]
We study the choice of the backbone LLM for medical AI agents, which is the foundation for the agent's overall reasoning and action generation.<n>Our findings demonstrate o1's ability to enhance diagnostic accuracy and consistency, paving the way for smarter, more responsive AI tools.
arXiv Detail & Related papers (2024-11-16T18:19:53Z) - Enhancing AI-Driven Psychological Consultation: Layered Prompts with Large Language Models [44.99833362998488]
We explore the use of large language models (LLMs) like GPT-4 to augment psychological consultation services.
Our approach introduces a novel layered prompting system that dynamically adapts to user input.
We also develop empathy-driven and scenario-based prompts to enhance the LLM's emotional intelligence.
arXiv Detail & Related papers (2024-08-29T05:47:14Z) - Synthetic Patients: Simulating Difficult Conversations with Multimodal Generative AI for Medical Education [0.0]
Effective patient-centered communication is a core competency for physicians.
Both seasoned providers and medical trainees report decreased confidence in leading conversations on sensitive topics.
We present a novel educational tool designed to facilitate interactive, real-time simulations of difficult conversations in a video-based format.
arXiv Detail & Related papers (2024-05-30T11:02:08Z) - Emotional Intelligence Through Artificial Intelligence : NLP and Deep Learning in the Analysis of Healthcare Texts [1.9374282535132377]
This manuscript presents a methodical examination of the utilization of Artificial Intelligence in the assessment of emotions in texts related to healthcare.
We scrutinize numerous research studies that employ AI to augment sentiment analysis, categorize emotions, and forecast patient outcomes.
There persist challenges, which encompass ensuring the ethical application of AI, safeguarding patient confidentiality, and addressing potential biases in algorithmic procedures.
arXiv Detail & Related papers (2024-03-14T15:58:13Z) - Validating a virtual human and automated feedback system for training
doctor-patient communication skills [3.0354760313198796]
We present the development and validation of a scalable, easily accessible, digital tool known as the Standardized Online Patient for Health Interaction Education (SOPHIE)
We found that participants who underwent SOPHIE performed significantly better than the control in overall communication, aggregate scores, empowering the patient, and showing empathy.
One day, we hope that SOPHIE will help make communication training resources more accessible by providing a scalable option to supplement existing resources.
arXiv Detail & Related papers (2023-06-27T05:23:08Z) - Large Language Models for Healthcare Data Augmentation: An Example on
Patient-Trial Matching [49.78442796596806]
We propose an innovative privacy-aware data augmentation approach for patient-trial matching (LLM-PTM)
Our experiments demonstrate a 7.32% average improvement in performance using the proposed LLM-PTM method, and the generalizability to new data is improved by 12.12%.
arXiv Detail & Related papers (2023-03-24T03:14:00Z) - Enabling AI and Robotic Coaches for Physical Rehabilitation Therapy:
Iterative Design and Evaluation with Therapists and Post-Stroke Survivors [66.07833535962762]
Artificial intelligence (AI) and robotic coaches promise the improved engagement of patients on rehabilitation exercises through social interaction.
Previous work explored the potential of automatically monitoring exercises for AI and robotic coaches, but deployment remains a challenge.
We present our efforts on eliciting the detailed design specifications on how AI and robotic coaches could interact with and guide patient's exercises.
arXiv Detail & Related papers (2021-06-15T22:06:39Z) - Designing Personalized Interaction of a Socially Assistive Robot for
Stroke Rehabilitation Therapy [64.52563354823711]
The research of a socially assistive robot has a potential to augment and assist physical therapy sessions for patients with neurological and musculoskeletal problems.
This paper presents an interactive approach of a socially assistive robot that can dynamically select kinematic features of assessment on individual patient's exercises to predict the quality of motion.
arXiv Detail & Related papers (2020-07-13T16:12:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.