Hyperinductance based on stacked Josephson junctions
- URL: http://arxiv.org/abs/2505.02764v1
- Date: Mon, 05 May 2025 16:20:14 GMT
- Title: Hyperinductance based on stacked Josephson junctions
- Authors: Paul Manset, José Palomo, Aurélien Schmitt, Kyrylo Gerashchenko, Rémi Rousseau, Himanshu Patange, Patrick Abgrall, Emmanuel Flurin, Samuel Deléglise, Thibaut Jacqmin, Léo Balembois,
- Abstract summary: Superinductances are key enablers for emerging quantum circuit architectures.<n>We present two fabrication techniques for realizing superinductances based on vertically stacked Josephson junctions.<n>Our results establish junction stacking as a scalable, robust, and flexible platform for next-generation quantum circuits.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Superinductances are superconducting circuit elements that combine a large inductance with a low parasitic capacitance to ground, resulting in a characteristic impedance exceeding the resistance quantum $R_Q = h/(2e)^2 \simeq 6.45 \mathrm{k}\Omega$. In recent years, these components have become key enablers for emerging quantum circuit architectures. However, achieving high characteristic impedance while maintaining scalability and fabrication robustness remains a major challenge. In this work, we present two fabrication techniques for realizing superinductances based on vertically stacked Josephson junctions. Using a multi-angle Manhattan (MAM) process and a zero-angle (ZA) evaporation technique -- in which junction stacks are connected pairwise using airbridges -- we fabricate one-dimensional chains of stacks that act as high-impedance superconducting transmission lines. Two-tone microwave spectroscopy reveals the expected $\sqrt{n}$ scaling of the impedance with the number of junctions per stack. The chain fabricated using the ZA process, with nine junctions per stack, achieves a characteristic impedance of $\sim 16 \mathrm{k}\Omega$, a total inductance of $5.9 \mathrm{\mu H}$, and a maximum frequency-dependent impedance of $50 \mathrm{k}\Omega$ at 1.4 GHz. Our results establish junction stacking as a scalable, robust, and flexible platform for next-generation quantum circuits requiring ultra-high impedance environments.
Related papers
- High Impedance Granular Aluminum Ring Resonators [0.0]
Ring resonators made with grAl meandered superinductors exhibit quality factors on the order of $105$ in the single-photon regime.<n>In some devices, in the single-photon regime, we observe a positive Kerr coefficient of unknown origin.
arXiv Detail & Related papers (2025-06-09T13:39:36Z) - Strong Charge-Photon Coupling in Planar Germanium Enabled by Granular Aluminium Superinductors [0.0]
We have integrated a granular aluminium resonator with a characteristic impedance exceeding the resistance quantum.
We demonstrate strong charge-photon coupling with a rate of $g_textc/2pi= (566 pm 2)$ MHz.
This method opens the path for novel qubits and high-fidelity, long-distance two-qubit gates.
arXiv Detail & Related papers (2024-07-03T12:53:01Z) - Toolbox for nonreciprocal dispersive models in circuit QED [41.94295877935867]
We provide a systematic method for constructing effective dispersive Lindblad master equations to describe weakly anharmonic superconducting circuits coupled by a generic dissipationless nonreciprocal linear system.
Results can be used for the design of complex superconducting quantum processors with nontrivial routing of quantum information, as well as quantum simulators of condensed matter systems.
arXiv Detail & Related papers (2023-12-13T18:44:55Z) - Observation of the Schmid-Bulgadaev dissipative quantum phase transition [0.0]
We show that a Josephson junction connected to a resistor must undergo a dissipation-induced quantum phase transition from superconductor to insulator.
In addition to elastic scattering, incident photons can spontaneously down-convert with a frequency-independent probability.
arXiv Detail & Related papers (2023-04-12T12:35:50Z) - Improving Josephson junction reproducibility for superconducting quantum
circuits: junction area fluctuation [0.0]
Josephson superconducting qubits and parametric amplifiers are prominent examples of superconducting quantum circuits.
critical current $I_c$ variation of the Josephson junction, as the most important electrical parameter, needs to be minimized.
We optimized Josephson junctions fabrication process and demonstrate resistance variation of $9.8-4.4%$ and $4.8-2.3%$ across $22times22$ $mm2$ and $5times10$ $mm2$ chip areas.
arXiv Detail & Related papers (2022-10-27T10:00:24Z) - Tuning the inductance of Josephson junction arrays without SQUIDs [0.0]
It is customary to use superconducting quantum interference devices (SQUIDs) for implementing magnetic field-tunable inductors.
Here, we demonstrate an equivalent tunability in a (SQUID-free) array of single Al/AlOx/Al Josephson tunnel junctions.
arXiv Detail & Related papers (2022-10-21T17:20:08Z) - Readout of a quantum processor with high dynamic range Josephson
parametric amplifiers [132.67289832617647]
Device is matched to the 50 $Omega$ environment with a bandwidth of 250-300 MHz, with input saturation powers up to -95 dBm at 20 dB gain.
A 54-qubit Sycamore processor was used to benchmark these devices.
Design has no adverse effect on system noise, readout fidelity, or qubit dephasing.
arXiv Detail & Related papers (2022-09-16T07:34:05Z) - Erasure qubits: Overcoming the $T_1$ limit in superconducting circuits [105.54048699217668]
amplitude damping time, $T_phi$, has long stood as the major factor limiting quantum fidelity in superconducting circuits.
We propose a scheme for overcoming the conventional $T_phi$ limit on fidelity by designing qubits in a way that amplitude damping errors can be detected and converted into erasure errors.
arXiv Detail & Related papers (2022-08-10T17:39:21Z) - Topological Josephson parametric amplifier array: A proposal for directional, broadband, and low-noise amplification [39.58317527488534]
Low-noise microwave amplifiers are crucial for detecting weak signals in fields such as quantum technology and radio astronomy.
We show that compact devices with few sites can achieve exceptional performance, with gains exceeding 20 dB over a bandwidth ranging from hundreds of MHz to GHz.
The device also operates near the quantum noise limit and provides topological protection against up to 15% fabrication disorder.
arXiv Detail & Related papers (2022-07-27T18:07:20Z) - High fidelity two-qubit gates on fluxoniums using a tunable coupler [47.187609203210705]
Superconducting fluxonium qubits provide a promising alternative to transmons on the path toward large-scale quantum computing.
A major challenge for multi-qubit fluxonium devices is the experimental demonstration of a scalable crosstalk-free multi-qubit architecture.
Here, we present a two-qubit fluxonium-based quantum processor with a tunable coupler element.
arXiv Detail & Related papers (2022-03-30T13:44:52Z) - Superconducting coupler with exponentially large on-off ratio [68.8204255655161]
Tunable two-qubit couplers offer an avenue to mitigate errors in multiqubit superconducting quantum processors.
Most couplers operate in a narrow frequency band and target specific couplings, such as the spurious $ZZ$ interaction.
We introduce a superconducting coupler that alleviates these limitations by suppressing all two-qubit interactions with an exponentially large on-off ratio.
arXiv Detail & Related papers (2021-07-21T03:03:13Z) - Surpassing the resistance quantum with a geometric superinductor [0.0]
Superinductors have a characteristic impedance exceeding the resistance quantum $R_textQ approx 6.45textkOmega$ which leads to a suppression of ground state charge fluctuations.
We present modeling, fabrication and characterization of 104 planar aluminum coil resonators with a characteristic impedance up to 30.9 $textkOmega$ at 5.6 GHz.
Geometric superinductors are free of uncontrolled tunneling events and offer high, linearity and the ability to couple magnetically.
arXiv Detail & Related papers (2020-07-03T12:22:44Z) - Coherent superconducting qubits from a subtractive junction fabrication
process [48.7576911714538]
Josephson tunnel junctions are the centerpiece of almost any superconducting electronic circuit, including qubits.
In recent years, sub-micron scale overlap junctions have started to attract attention.
This work paves the way towards a more standardized process flow with advanced materials and growth processes, and constitutes an important step for large scale fabrication of superconducting quantum circuits.
arXiv Detail & Related papers (2020-06-30T14:52:14Z) - Hardware-Encoding Grid States in a Non-Reciprocal Superconducting
Circuit [62.997667081978825]
We present a circuit design composed of a non-reciprocal device and Josephson junctions whose ground space is doubly degenerate and the ground states are approximate codewords of the Gottesman-Kitaev-Preskill (GKP) code.
We find that the circuit is naturally protected against the common noise channels in superconducting circuits, such as charge and flux noise, implying that it can be used for passive quantum error correction.
arXiv Detail & Related papers (2020-02-18T16:45:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.