論文の概要: TWIST: Teleoperated Whole-Body Imitation System
- arxiv url: http://arxiv.org/abs/2505.02833v1
- Date: Mon, 05 May 2025 17:59:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-06 18:49:35.766427
- Title: TWIST: Teleoperated Whole-Body Imitation System
- Title(参考訳): TWIST:テレオペレーテッド全体模擬システム
- Authors: Yanjie Ze, Zixuan Chen, João Pedro Araújo, Zi-ang Cao, Xue Bin Peng, Jiajun Wu, C. Karen Liu,
- Abstract要約: 全身動作模倣によるヒューマノイド遠隔操作システムTWISTについて述べる。
我々は,強化学習と行動クローニングを組み合わせた,頑健で適応的で応答性の高い全身制御装置を開発した。
TWISTは、現実世界のヒューマノイドロボットが、前例のない、多目的で、調整された全身運動能力を達成できるようにする。
- 参考スコア(独自算出の注目度): 28.597388162969057
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Teleoperating humanoid robots in a whole-body manner marks a fundamental step toward developing general-purpose robotic intelligence, with human motion providing an ideal interface for controlling all degrees of freedom. Yet, most current humanoid teleoperation systems fall short of enabling coordinated whole-body behavior, typically limiting themselves to isolated locomotion or manipulation tasks. We present the Teleoperated Whole-Body Imitation System (TWIST), a system for humanoid teleoperation through whole-body motion imitation. We first generate reference motion clips by retargeting human motion capture data to the humanoid robot. We then develop a robust, adaptive, and responsive whole-body controller using a combination of reinforcement learning and behavior cloning (RL+BC). Through systematic analysis, we demonstrate how incorporating privileged future motion frames and real-world motion capture (MoCap) data improves tracking accuracy. TWIST enables real-world humanoid robots to achieve unprecedented, versatile, and coordinated whole-body motor skills--spanning whole-body manipulation, legged manipulation, locomotion, and expressive movement--using a single unified neural network controller. Our project website: https://humanoid-teleop.github.io
- Abstract(参考訳): ヒューマノイドロボットを全身的に遠隔操作することは、汎用ロボットインテリジェンスを開発するための基本的なステップであり、人間の動きはあらゆる自由度を制御するのに理想的なインターフェースを提供する。
しかし、現在のヒューマノイド遠隔操作システムは、通常は単独の移動や操作のタスクに制限される、調整された全身の動作を可能にするには足りていない。
全身動作模倣によるヒューマノイド遠隔操作システムTWISTについて述べる。
まず、人間のモーションキャプチャデータをヒューマノイドロボットに再ターゲティングすることで、参照モーションクリップを生成する。
次に、強化学習と行動クローニング(RL+BC)を組み合わせて、頑健で適応的で応答性の高い全身制御装置を開発する。
システム解析を通じて、特権付き将来のモーションフレームと実世界のモーションキャプチャー(MoCap)データを組み込むことで、トラッキングの精度が向上することを示す。
TWISTは、現実世界のヒューマノイドロボットが、前例のない、万能で、調整された全身運動のスキルを達成できる。
プロジェクトWebサイト: https://humanoid-teleop.github.io
関連論文リスト
- HOMIE: Humanoid Loco-Manipulation with Isomorphic Exoskeleton Cockpit [52.12750762494588]
本稿では,半自律遠隔操作システムHOMIEを紹介する。
ペダルにマッピングされた身体制御のための強化学習ポリシー、腕制御のための異形外骨格アーム、手操作のためのモーションセンシンググローブを組み合わせている。
このシステムは完全なオープンソースであり、デモとコードはhttps://homietele.org/.com/で見ることができる。
論文 参考訳(メタデータ) (2025-02-18T16:33:38Z) - HumanPlus: Humanoid Shadowing and Imitation from Humans [82.47551890765202]
ヒューマノイドが人間のデータから動きや自律的なスキルを学ぶためのフルスタックシステムを導入する。
まず、既存の40時間動作データセットを用いて、強化学習によるシミュレーションの低レベルポリシーを訓練する。
次に、自己中心型視覚を用いてスキルポリシーを訓練し、ヒューマノイドが自律的に異なるタスクを完了できるようにする。
論文 参考訳(メタデータ) (2024-06-15T00:41:34Z) - Learning Human-to-Humanoid Real-Time Whole-Body Teleoperation [34.65637397405485]
本稿では,Human to Humanoid(H2O)について紹介する。H2Oは,RGBカメラのみを搭載したヒューマノイドロボットのリアルタイム遠隔操作を実現するフレームワークである。
我々は、これらの洗練された動きを用いてシミュレーションで頑健なリアルタイムヒューマノイド運動模倣機を訓練し、実ヒューマノイドロボットにゼロショットで転送する。
私たちの知る限りでは、学習に基づくリアルタイムな人型ロボット遠隔操作を実現する最初のデモとなる。
論文 参考訳(メタデータ) (2024-03-07T12:10:41Z) - Expressive Whole-Body Control for Humanoid Robots [20.132927075816742]
我々は、人間の動きをできるだけリアルに模倣するために、人間サイズのロボットで全身制御ポリシーを学習する。
シミュレーションとSim2Real転送のトレーニングにより、私たちのポリシーはヒューマノイドロボットを制御して、さまざまなスタイルで歩いたり、人と握手したり、現実世界で人間と踊ったりできる。
論文 参考訳(メタデータ) (2024-02-26T18:09:24Z) - HERD: Continuous Human-to-Robot Evolution for Learning from Human
Demonstration [57.045140028275036]
本研究では,マイクロ進化的強化学習を用いて,操作スキルを人間からロボットに伝達可能であることを示す。
本稿では,ロボットの進化経路とポリシーを協調的に最適化する多次元進化経路探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-08T15:56:13Z) - Model Predictive Control for Fluid Human-to-Robot Handovers [50.72520769938633]
人間の快適さを考慮に入れた計画運動は、人間ロボットのハンドオーバプロセスの一部ではない。
本稿では,効率的なモデル予測制御フレームワークを用いてスムーズな動きを生成することを提案する。
ユーザ数名の多様なオブジェクトに対して,人間とロボットのハンドオーバ実験を行う。
論文 参考訳(メタデータ) (2022-03-31T23:08:20Z) - Synthesis and Execution of Communicative Robotic Movements with
Generative Adversarial Networks [59.098560311521034]
我々は、繊細な物体を操作する際に人間が採用するのと同じキネマティクス変調を2つの異なるロボットプラットフォームに転送する方法に焦点を当てる。
我々は、ロボットのエンドエフェクターが採用する速度プロファイルを、異なる特徴を持つ物体を輸送する際に人間が何をするかに触発されて調整する。
我々は、人体キネマティクスの例を用いて訓練され、それらを一般化し、新しい有意義な速度プロファイルを生成する、新しいジェネレーティブ・アドバイサル・ネットワークアーキテクチャを利用する。
論文 参考訳(メタデータ) (2022-03-29T15:03:05Z) - Robotic Telekinesis: Learning a Robotic Hand Imitator by Watching Humans
on Youtube [24.530131506065164]
我々は、人間なら誰でもロボットの手と腕を制御できるシステムを構築します。
ロボットは、人間のオペレーターを1台のRGBカメラで観察し、その動作をリアルタイムで模倣する。
我々はこのデータを利用して、人間の手を理解するシステムを訓練し、人間のビデオストリームをスムーズで、素早く、安全に、意味論的に誘導デモに類似したロボットのハンドアーム軌道に再ターゲティングする。
論文 参考訳(メタデータ) (2022-02-21T18:59:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。