論文の概要: Feel the Force: Contact-Driven Learning from Humans
- arxiv url: http://arxiv.org/abs/2506.01944v1
- Date: Mon, 02 Jun 2025 17:57:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-04 21:47:34.699045
- Title: Feel the Force: Contact-Driven Learning from Humans
- Title(参考訳): Feel the Force: 人間からのコンタクト駆動学習
- Authors: Ademi Adeniji, Zhuoran Chen, Vincent Liu, Venkatesh Pattabiraman, Raunaq Bhirangi, Siddhant Haldar, Pieter Abbeel, Lerrel Pinto,
- Abstract要約: 操作中のきめ細かい力の制御は、ロボット工学における中核的な課題である。
We present FeelTheForce, a robot learning system that model human tactile behavior to learn force-sensitive control。
提案手法は,5つの力覚的操作タスクで77%の成功率を達成した,スケーラブルな人間の監督において,堅牢な低レベル力制御を実現する。
- 参考スコア(独自算出の注目度): 52.36160086934298
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Controlling fine-grained forces during manipulation remains a core challenge in robotics. While robot policies learned from robot-collected data or simulation show promise, they struggle to generalize across the diverse range of real-world interactions. Learning directly from humans offers a scalable solution, enabling demonstrators to perform skills in their natural embodiment and in everyday environments. However, visual demonstrations alone lack the information needed to infer precise contact forces. We present FeelTheForce (FTF): a robot learning system that models human tactile behavior to learn force-sensitive manipulation. Using a tactile glove to measure contact forces and a vision-based model to estimate hand pose, we train a closed-loop policy that continuously predicts the forces needed for manipulation. This policy is re-targeted to a Franka Panda robot with tactile gripper sensors using shared visual and action representations. At execution, a PD controller modulates gripper closure to track predicted forces-enabling precise, force-aware control. Our approach grounds robust low-level force control in scalable human supervision, achieving a 77% success rate across 5 force-sensitive manipulation tasks. Code and videos are available at https://feel-the-force-ftf.github.io.
- Abstract(参考訳): 操作中のきめ細かい力の制御は、ロボット工学における中核的な課題である。
ロボットが収集したデータやシミュレーションから学んだロボットポリシーは、将来性を示す一方で、さまざまな現実世界のインタラクションを一般化するのに苦労している。
人間から直接学ぶことはスケーラブルなソリューションを提供し、デモ参加者は自然の体現と日常の環境でスキルを発揮できる。
しかし、視覚的なデモンストレーションだけでは、正確な接触力を推測するために必要な情報が欠けている。
We present FeelTheForce (FTF): a robot learning system that model human tactile behavior to learn force-sensitive manipulate。
触覚グローブを用いて接触力と視覚モデルを用いて手ポーズを推定し,操作に必要な力を連続的に予測するクローズドループポリシーを訓練する。
このポリシーは、視覚と行動の共有表現を用いた触覚グリップセンサーを備えたFranka Pandaロボットに再ターゲティングされる。
PDコントローラは、実行時にグリップパークロージャを変調して、予測された力の正確な力覚制御を追跡する。
提案手法は,5つの力覚的操作タスクで77%の成功率を達成した,スケーラブルな人間の監督において,堅牢な低レベル力制御を実現する。
コードとビデオはhttps://feel-the-force-ftf.github.io.comで公開されている。
関連論文リスト
- TWIST: Teleoperated Whole-Body Imitation System [28.597388162969057]
全身動作模倣によるヒューマノイド遠隔操作システムTWISTについて述べる。
我々は,強化学習と行動クローニングを組み合わせた,頑健で適応的で応答性の高い全身制御装置を開発した。
TWISTは、現実世界のヒューマノイドロボットが、前例のない、多目的で、調整された全身運動能力を達成できるようにする。
論文 参考訳(メタデータ) (2025-05-05T17:59:03Z) - HOMIE: Humanoid Loco-Manipulation with Isomorphic Exoskeleton Cockpit [52.12750762494588]
本稿では,半自律遠隔操作システムHOMIEを紹介する。
ペダルにマッピングされた身体制御のための強化学習ポリシー、腕制御のための異形外骨格アーム、手操作のためのモーションセンシンググローブを組み合わせている。
このシステムは完全なオープンソースであり、デモとコードはhttps://homietele.org/.com/で見ることができる。
論文 参考訳(メタデータ) (2025-02-18T16:33:38Z) - Built Different: Tactile Perception to Overcome Cross-Embodiment Capability Differences in Collaborative Manipulation [1.9048510647598207]
触覚は、人間とロボットのアシスタントの間で暗黙のコミュニケーションを行う強力な手段である。
本稿では,触覚がロボットシステム間での身体間差異をいかに超越させるかを検討する。
本研究では,ロボットと人間が協調して宇宙空間で物体を操る,協調作業を可能にする方法を示す。
論文 参考訳(メタデータ) (2024-09-23T10:45:41Z) - Hand-Object Interaction Pretraining from Videos [77.92637809322231]
我々は,3次元ハンドオブジェクトインタラクショントラジェクトリから,一般的なロボット操作を学習する。
人間の手と操作された物体を3D空間で共有し、人間の動きをロボットの動きと共有する。
我々は、このポリシーを、強化学習(RL)と行動クローニング(BC)の両方で微調整することで、下流タスクへのサンプル効率の適応を可能にし、従来のアプローチと比較して堅牢性と一般化性を同時に改善できることを実証的に実証した。
論文 参考訳(メタデータ) (2024-09-12T17:59:07Z) - Learning Variable Compliance Control From a Few Demonstrations for Bimanual Robot with Haptic Feedback Teleoperation System [5.497832119577795]
厳格なロボットを使った、きめ細やかな、接触に富んだ操作は、ロボット工学において重要な課題である。
外部センサを介して力を制御することでこれらの問題を緩和するために、コンプライアンス制御スキームが導入されている。
Demonstrationsからの学習は直感的な代替手段であり、ロボットは観察された動作を通じて操作を学習できる。
論文 参考訳(メタデータ) (2024-06-21T09:03:37Z) - Learning Force Control for Legged Manipulation [18.894304288225385]
本稿では,力覚へのアクセスを必要とせず,直接力制御のためのRLポリシーを訓練する方法を提案する。
腕を持つ四足ロボットの全身制御プラットフォーム上で本手法を実証する。
足のマニピュレータに学習した全身力制御を初めて導入し、より汎用的で適応可能な脚ロボットの道を歩む。
論文 参考訳(メタデータ) (2024-05-02T15:53:43Z) - Giving Robots a Hand: Learning Generalizable Manipulation with
Eye-in-Hand Human Video Demonstrations [66.47064743686953]
眼内カメラは、視覚に基づくロボット操作において、より優れたサンプル効率と一般化を可能にすることを約束している。
一方、人間がタスクを行うビデオは、ロボット遠隔操作の専門知識を欠いているため、収集コストがずっと安い。
本研究では,広範にラベルのない人間ビデオによるロボット模倣データセットを拡張し,眼球運動ポリシーの一般化を大幅に促進する。
論文 参考訳(メタデータ) (2023-07-12T07:04:53Z) - Zero-Shot Robot Manipulation from Passive Human Videos [59.193076151832145]
我々は,人間の映像からエージェント非依存の行動表現を抽出するフレームワークを開発した。
我々の枠組みは、人間の手の動きを予測することに基づいている。
トレーニングされたモデルゼロショットを物理ロボット操作タスクにデプロイする。
論文 参考訳(メタデータ) (2023-02-03T21:39:52Z) - HERD: Continuous Human-to-Robot Evolution for Learning from Human
Demonstration [57.045140028275036]
本研究では,マイクロ進化的強化学習を用いて,操作スキルを人間からロボットに伝達可能であることを示す。
本稿では,ロボットの進化経路とポリシーを協調的に最適化する多次元進化経路探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-08T15:56:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。