論文の概要: Enhancing tutoring systems by leveraging tailored promptings and domain knowledge with Large Language Models
- arxiv url: http://arxiv.org/abs/2505.02849v1
- Date: Fri, 02 May 2025 02:30:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-07 18:50:11.031202
- Title: Enhancing tutoring systems by leveraging tailored promptings and domain knowledge with Large Language Models
- Title(参考訳): 大規模言語モデルを用いた教科学習システムの構築
- Authors: Mohsen Balavar, Wenli Yang, David Herbert, Soonja Yeom,
- Abstract要約: ChatGPTやIntelligent Tutoring Systems(ITS)といったAI駆動のツールは、パーソナライゼーションと柔軟性を通じて、学習エクスペリエンスを向上している。
ITSは、個々の学習ニーズに適応し、生徒のパフォーマンス、認知状態、学習パスに基づいてカスタマイズされたフィードバックを提供する。
我々の研究は,大規模言語モデル(LLM)の迅速な工学化にRAG(Retrieval Augmented Generation)を介して,スキルアラインなフィードバックを組み込むことによって,これらのギャップに対処することを目的としている。
- 参考スコア(独自算出の注目度): 2.5362697136900563
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in artificial intelligence (AI) and machine learning have reignited interest in their impact on Computer-based Learning (CBL). AI-driven tools like ChatGPT and Intelligent Tutoring Systems (ITS) have enhanced learning experiences through personalisation and flexibility. ITSs can adapt to individual learning needs and provide customised feedback based on a student's performance, cognitive state, and learning path. Despite these advances, challenges remain in accommodating diverse learning styles and delivering real-time, context-aware feedback. Our research aims to address these gaps by integrating skill-aligned feedback via Retrieval Augmented Generation (RAG) into prompt engineering for Large Language Models (LLMs) and developing an application to enhance learning through personalised tutoring in a computer science programming context. The pilot study evaluated a proposed system using three quantitative metrics: readability score, response time, and feedback depth, across three programming tasks of varying complexity. The system successfully sorted simulated students into three skill-level categories and provided context-aware feedback. This targeted approach demonstrated better effectiveness and adaptability compared to general methods.
- Abstract(参考訳): 人工知能(AI)と機械学習の最近の進歩は、コンピュータベースの学習(CBL)への関心を再燃させた。
ChatGPTやIntelligent Tutoring Systems(ITS)といったAI駆動のツールは、パーソナライゼーションと柔軟性を通じて、学習エクスペリエンスを向上している。
ITSは、個々の学習ニーズに適応し、生徒のパフォーマンス、認知状態、学習パスに基づいてカスタマイズされたフィードバックを提供する。
これらの進歩にもかかわらず、さまざまな学習スタイルの調整と、リアルタイムでコンテキスト対応のフィードバックの提供には課題が残っている。
本研究の目的は,Large Language Models (LLMs) のファシリテートエンジニアリングにRAG(Retrieval Augmented Generation)によるスキルアライメントフィードバックを統合し,コンピュータサイエンスプログラミングの文脈におけるパーソナライズド・チュータリングによる学習向上のためのアプリケーションを開発することである。
パイロットスタディは、3つの定量的指標(可読性スコア、応答時間、フィードバック深さ)を用いて、複雑さの異なる3つのプログラミングタスクに対して提案したシステムを評価した。
このシステムは、学生を3つのスキルレベルに分類し、文脈認識フィードバックを提供する。
この手法は, 一般的な手法と比較して, 有効性と適応性を示した。
関連論文リスト
- Learn while Unlearn: An Iterative Unlearning Framework for Generative Language Models [52.03511469562013]
3つのコアコンポーネントで構成されるICU(Iterative Contrastive Unlearning)フレームワークを紹介する。
知識未学習誘導モジュールは、未学習の損失を使用して、特定の知識を除去するためにターゲットとする。
Contrastive Learning Enhancementモジュールは、純粋な未学習の目標に対してモデルの表現力を保持する。
イテレーティブ・アンラーニング・リファインメントモジュールは、進行中の評価と更新を通じて、アンラーニングプロセスを動的に調整する。
論文 参考訳(メタデータ) (2024-07-25T07:09:35Z) - AI-Tutoring in Software Engineering Education [0.7631288333466648]
我々は,GPT-3.5-TurboモデルをAI-TutorとしてAPASアルテミスに組み込むことで,探索的なケーススタディを行った。
この発見は、タイムリーなフィードバックやスケーラビリティといった利点を浮き彫りにしている。
しかし,AI-Tutor を用いた場合,一般的な応答や学習進行抑制に対する学生の懸念も明らかであった。
論文 参考訳(メタデータ) (2024-04-03T08:15:08Z) - Lessons Learned from Designing an Open-Source Automated Feedback System
for STEM Education [5.326069675013602]
RATsAppはオープンソースの自動フィードバックシステム(AFS)で、フォーマティブフィードバックなどの研究ベースの機能を組み込んでいる。
このシステムは、数学的能力、表現能力、データリテラシーなどの中核的なSTEM能力に焦点を当てている。
オープンソースプラットフォームであるRATsAppは、継続的な開発へのパブリックコントリビューションを奨励し、教育ツールを改善するための共同アプローチを促進する。
論文 参考訳(メタデータ) (2024-01-19T07:13:07Z) - Empowering Private Tutoring by Chaining Large Language Models [87.76985829144834]
本研究は,最先端の大規模言語モデル(LLM)を活用した,本格的な知的チューリングシステムの開発を探求する。
このシステムは、相互に接続された3つのコアプロセス(相互作用、反射、反応)に分けられる。
各プロセスは LLM ベースのツールと動的に更新されたメモリモジュールによって実装される。
論文 参考訳(メタデータ) (2023-09-15T02:42:03Z) - Lifelong Learning Metrics [63.8376359764052]
DARPA Lifelong Learning Machines (L2M) プログラムは、人工知能(AI)システムの進歩を目指している。
本論文は、生涯学習シナリオを実行するエージェントのパフォーマンスの構築と特徴付けのためのフォーマリズムを概説する。
論文 参考訳(メタデータ) (2022-01-20T16:29:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。